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SUN-VIEW-TARGET GEOMETRY EFFECTS ON SPECTRALLY-DERIVED VEGETATIVE INDEX

ESTIMATES OF ABSORBED RADIATION AND LEIP AREA

Daniel Cornell, M.S.
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Advisor: Dr. Elizabeth A. Walter-Shea

Estimating the quantity and quality of vegetation is a primary goal of

remote sensing. The impact of changing sun-view-target geometry on

spectral measures of vegetative amount (vegetative indices, VIs) has been

a major source of concern with this pursuit. A field experiment was

conducted to test the statistical significance of solar and view zenith

angle effects on the regression coefficients of relationships established

between the simple ratio and normalized difference vegetation indices and

the biophysical parameters fraction of absorbed photosynthetically active

radiation (APAR) and leaf area index (LAI). Measurements of spectral

bidirectional reflectance and biophysical parameters were made in an

alfalfa (MedLcago Sativa, L.) field located near Mead, NE throughout the

1990 growing season. View and solar zenith angle effects on VIs were

found to statistically affect (at a - 0.05) the regression coefficients

for relationships established between VIs and APAR, LAI. While APAR was

best estimated with nadir or near nadir-derived VIs for all solar zenith

angles, no one view zenith angle at all solar zenith angles best estimated

LAI from the two VIs. Despite the statistical significance of view and

solar zenith angle effects on regression parameters, estimation of APAR

and IAI with VIs derived from off-nadir spectral data used in nadir

derived regression relationships resulted in D-indices of agreement

greater than 0.94 with measured values of APAR and LAI. Predicting above
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ground dry weight by accumulating V1s or measuring lAI (with LAI-2000)

resulted in a lower mean relative error than using measured or estimated

values of accumulated APAR. The variation in regression coefficients for

the relationships between VIs and APAR and LAI as a result of differences

in view and solar zenith angle though statistically significant may be of

less concern than previously thought.
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conducted to test the statistical significance of solar and view zenith

angle effects on the regression coefficients of relationships established

between the simple ratio and normalized difference vegetation indices and

the biophysical parameters fraction of absorbed photosynthetically active

radiation (APAR) and leaf area index (LAI). Measurements of spectral

bidirectional reflectance and biophysical parameters were made in an

alfalfa (Medicago Sativa, L.) field located near Mead, NE throughout the

1990 growing season. View and solar zenith angle effects on VIs were

found to statistically affect (at a - 0.05) the regression coefficients

for relationships established between VIs and APAR, LAI. Whilq APAR was

best estimated with nadir or near nadir-derived VIs for all solar zenith

angles, no one view zenith angle at all solar zenith angles best estimated

LAI from the two VIs. Despite the statistical siglficance of view and

solar zenith angle effects on regression parameters, estimation of APAR

and LAI with VIs derived from off-nadir spectral data used in nadir

derived regression relationships resulted in D-indices of agreement
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greater than 0.94 with measured values of APAR and lAI. Predicting above

ground dry weight by accumulating VIs or measuring LAI (with LAI-2000)

resulted in a lower mean relative error than using measured or estimated

values of accumulated APAR. The variation in regression coefficients for

the relationships between VIs and APAR and IAI as a result of differences

in view and solar zenith angle though statistically significant may be of

less concern than previously thought.
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INTRODUCTION

Remote sensing is most commonly thought of as the acquisition of

reflected or emitted electromagnetic energy from surfaces. The

usefulness of these data is dependent upon our knowledge of the radiative

transfer processes involbved and the understanding of observed

relationships between the detected radiation and biophysical processes.

Perhaps the most promising application of remote sensing is the large

scale monitoring of agriculture. The ability to reliably identify crops

and estimate agronomic variables related to yield from multispectral data

derived from sensors aboard satellites would offer the opportunity to

implement growth and yield models over large areas.

With this in mind, much research has been focused on understanding

radiative transfer in the atmosphere as well as in agricultural and

natural vegetative canopies. This research has led to the development of

vegetative indices (VIs) (combinations of spectral bands) which correlate

well with many biophysical parameters. The most relevant of these

parameters in terms of yield forecasting is the fraction of absorbed

photosynthetically active radiation (APAR). Another important biophysical

parameter is leaf area index (LAI) which is used in energy balance

determinations and the partitioning of evapotranspiration into evaporation

from the soil and transpiration through the plant.

Most of the established relationships between VIs and biophysical

parameters have been established with nadir or near-nadir viewing sensors.

However, the temporal resolution of near-nadir looking satellites, such as
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LANDSAT, is too low to effectively monitor dynamically growing vegetation.

Subsequently, data from the AVHRR (Advanced Very High Resolution

Radiometer) sensor flown on the NOAA meteorological satellites, whose ±

56" scanning capabilities allows for daily coverage, has been used

increasingly in recent years to analyze regional and global vegetation.

Many factors such as the optical properties of the vegetative

elements, percent ground cover, canopy geometry, atmospheric optical

depth, and sun-view-target geometry interact to give the recorded spectral

reflectance. Subsequently, many of the established relationships between

VIs and biophysical parameters are site and time specific. Therefore, the

need arises to characterize the significance of these external factors on

the relationships between VIs and biophysical parameters. If the effect

of external factors such as changing sun-view-target geometry can be

quantified, the possibility exists that remotely sensed data can be

processed so that relationships can be defined that will hold over a broad

range of viewing conditions.

The objective of this research is to gain an understanding of the

relationship between two commonly used vegetative indices (the simple

ratio, SRVI and the normalized difference, NDVI) and LAI and APAR of a

developing alfalfa canopy under a variety of solar and view zenith angle

conditions.
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LITERATURE REVIEW

Since vegetation is a natural resource on which all animal life

depends, it is one of the most fundamentally important targets for remote

sensing by aircraft and satellite-borne sensors (Smith, 1981). The basis

of our ability to distinguish vegetation by remote sensing techniques

stems from the unique way in which electromagnetic radiation (EKR)

interacts with green vegetation. Reflected solar radiation is most

commonly used in remote sensing of vegetation, although radiation in the

thermal infrared and microwave regions of the electromagnetic spectrum

(EMS) are also employed. Unfortunately, measured reflectance or radiance

from a vegetative area depends not only on the optical properties of the

canopy components (leaves, stems, and reproductive organs) and the

underlying soil background but is a complex function of solar zenith

angle, atmospheric condition, sensor view angle, and canopy geometry.

Because the interaction of radiant energy with a canopy is a function of

all these factors, the results of experiments designed to highlight

certain effects are necessarily difficult to interpret. But this has not

reduced the research effort; the literature with respect to these

phenomena is quite extensive. The following is a summary of research on

the nature and significance of parameters determining canopy reflectance

as well as on the use of canopy reflectance to predict biophysical

properties.
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Vegetation

Reflection of incident solar radiation from the outer surface of a

leaf (specular reflection) is small (2-3X) and relatively wavelength

independent (Knipling, 1970). Radiation entering the leaf undergoes

refractive-reflective scattering within the leaf, mostly at interfaces

between the cell walls and intercellular air spaces. This scattering is

significant because it: 1) increases the optical path length within the

leaf, facilitating the absorption of visible light by chlorophyll and

other pigments; and 2) randomizes the direction of light so that the

probabilities of light escaping back through the top portion of the leaf

(reflected) or passing through the bottom of the leaf (transmitted) become

fairly equal (Smith, 1981). This second result accounts for the close

correlation between the reflectance and transmittance spectra of a leaf

and the increase in near-infrared (NIR) canopy reflectance with increasing

LAI. The increase in NIR canopy reflectance occurs because a good

percentage of the transmitted NIR radiation is reflected from lower layers

of vegetation and subsequently retransmitted through the upper layers.

Canopy reflectance differs from leaf reflectance due to variations in the

effective illumination angle as a result of the canopy architecture (leaf

orientation and distribution) and the presence of other canopy components

and the soil background (Knipling, 1970). Some researchers have alluded

to the significance of non-Lambertian leaf properties with respect to

canopy reflectance (Breece and Holmes, 1971; Walter-Shea 1987) but these

properties may have little impact when integrated over the large ground
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resolution elements associated with remote sensing from satellites (Pinker

and Stowe, 1990).

Soil

Soil spectra display a gradual increase in reflectance from the

visible (10-12%) to the NIR (17-22%) in contrast to vegetation spectra

with low visible reflectance (<51) and high reflectance in the NIR (30-

401) (Ranson et al., 1985a). Spectral reflectance from bare soil is

characterized by strong backscattering and is affected by soil mineralogy,

fraction of organic matter, moisture content, texture, and surface

roughness characteristics (Irons et al., 1989).

Soil reflectance influence on the observed composite canopy

reflectance is a function of the quantity and quality of transmitted

radiation through the overlying canopy and the soil brightness (Heilman

and Kress, 1987). The sensitivity of the composite canopy reflectance to

differences in soil background are greatest for canopies of intermediate

levels of vegetation (40-601 ground cover) overlying bright soils since

canopy scattered, soil reflected radiation is enriched in the NIR and

therefore strongly resembles the vegetative spectral response (Huete et

al., 1985). Thus, soil and plant spectra interactively mix in a non-

additive, partly correlated manner to produce the composite canopy

spectra.
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Atmosphere

Radiative transfer processes through the atmosphere influence the

interpretation of remotely sensed data by altering: 1) the proportion of

direct and diffuse irradiance components on a remotely sensed target; and

2) the amount of reflected radiation reaching the sensor. This latter

influence plays only a minor role in ground-based measurements but becomes

significant for measurements made at aircraft altitudes (Royer et al.,

1985).

Under clear sky conditions, the irradiance on a horizontal surface

can be characterized by the solar zenith angle and optical depth of the

atmosphere (Kriebel, 1976). The optical depth of the atmosphere

ultimately determines the percentage of diffuse radiation and therefore

the significance of shadows. In general, all atmospheric effects are

wavelength dependent. The impact of the atmosphere decreases with

increasing wavelength.

Ground-based reflectance measurements have shown that atmospheric

effects may differ with variations in canopy cover and architecture.

Deering and Eck (1987) found that reflectance factors (RMs), the ratio of

reflectance to irradiance, from a full cover canopy decreased with

increasing atmospheric optical depth but RF values from an incomplete

canopy increased with increasing atmospheric optical depth. NIR RF

changes were less than those in the visible. Under higher optical

thickness conditions, a greater percentage of the incoming radiation is

diffuse. Deering and Eck reasoned that the full canopy RFs decreased as

optical thickness increased due to less specular reflection and greater
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penetration of diffuse radiation into the canopy while the increase in

canopy RFs under the higher optical depth conditions for the incomplete

canopy was the result of a lessening of shadows. An increase in

atmospheric optical thickness decreases the soil induced variations in

canopy reflectance (Huete and Jackson, 1988).

Solar Zenith Angle

There seems to be no clear increasing or decreasing trend of canopy

reflectance as a function of solar zenith angle with variations resulting

from differences in LAI, percent cover, canopy geometry and planting

configuration (Kimes et al., 1980b). However, both simulated and field

data have shown that nadir-viewed canopy reflectances decrease with

increasing solar zenith angle for incomplete canopies as a result of an

increase in shadows. Changes in the amount of shadow have a greater

affect in the visible than in the NIR due to the lower leaf transmittance

in the visible compared to the NIR. Therefore, solar zenith angle effects

on canopy reflectance are greater for visible than NIR radiation. Changes

in canopy reflectance as a result of changes in solar zenith angle

decrease as the canopy cover increases and/or the canopy geometry becomes

more planophile (horizontal) (Ranson et al., 1985a; Kirchner et al.,

1982).
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Canopy Geometry

For a given amount of vegetation (equal leaf area/phytomass), a

change in the distribution and orientation of the canopy elements can

bring about large differences in the observed reflectance. These

differences are due to changes in the probability of gap, i.e. the

probability of a light ray penetrating a canopy without contacting any

vegetative elements. The impact of changes in canopy geometry on canopy

reflectance will depend on the solar angle and the amount of sky (diffuse)

irradiance.

Pinter et al. (1985) observed major differences in reflection among

six full cover spring wheat cultivar canopies despite similarities in

green leaf area, biomass, and measured leaf optical properties.

Differences in reflectance were attributed to differences in canopy

geometry. The most planophile canopy exhibited the highest reflectance

and the smallest diurnal variation for all measured spectral bands, while

the most erectophile canopy had the lowest reflectance and the largest

diurnal variation. Differences in reflectance between the different

cultivars varied with both solar zenith angle and wavelength of sensed

radiation. Maximum differences among cultivars occurred near solar noon

in the NIR while, in the visible waveband, cultivar differences in

reflectance were minimal at solar noon. Different results could be

expected for incomplete canopies as the soil reflectance contribution

becomes more significant, especially in the visible wavelengths.

Because a planophile canopy maintains a relatively constant

probability of gap with changing solar zenith angle, the reflectance from
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a planophile canopy is expected to be more affected by any canopy geometry

change as a result of wind, environmental stress or heliotropism than

reflectance from an erectophile canopy (Kimes, 1984). However, in a study

on the effect of wind on barley (an erectophile) and alfalfa (a

planophile) canopy reflectances, Lord and DesJardins (1985) found that a

planophile canopy will, in general, be less affected by wind. Within

windy and calm periods, extreme values of barley canopy reflectance

differed by 60% and 12% respectively in the red portion of the EMS, and by

40% and 8% in the NIR. Reflectance differences from the alfalfa canopy,

which is more compact and dense then barley, reached a maximum of only 10%

for both periods and spectral regions. Lord and DesJardins concluded that

stem bending movement in the barley introduced larger fluctuations in

canopy geometry and thus reflectance than the leaf fluttering observed in

the alfalfa. Analysis of the data also showed that deviations in visible

and NIR reflectance were mostly positive during windy periods for both

crops. Wright (1986) observed that wind had no significant effect on

barley canopy reflectance until the plants achieved inflorescence

(flowering). Moran et al. (1989), monitoring the diurnal changes in

canopy geometry and reflectance in alfalfa, a diaheliotropic plant,

observed a significant decrease in canopy reflectance during periods of

water stress. The decrease in canopy reflectance was attributed to the

canopy elements being more vertical during periods of water stress as a

result of leaflet cupping along with a diminished capacity for the leaves

to track the sun due to decreased plant water potential.
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Off-Nadir Viewing

Because all natural surfaces have anisotropic reflectance properties,

the use of off-nadih view angles further complicates the analysis of

remote sensing data. However, unlike some of the previously mentioned

causes of variation in reflectance, off-nadir viewing provides some

beneficial inputs to the remote sensing process. First, off-nadir viewing

increases the temporal resolution of polar orbiting satellites and

secondly, it provides additional information for target identification

(classification) purposes (Tucker, 1980; Gerstl and Simmer, 1986).

Reported influences of off-nadir viewing on changes in reflectance are not

consistent. The inconsistency can be attributed to differences in the

parameters previously discussed (ground cover, soil type, atmospheric

turbidity, solar angle, and canopy geometry) as well as experimental

procedure (sensor field of view, ground resolution element, spectral

resolution, target homogeneity, and simulation model used).

In general, for complete homogeneous canopies, the major trend at all

solar zenith angles and wavelengths is a minimum reflectance near nadir

with increasing reflectances as off-nadir view zenith angle increases.

This is the result of the sensor viewing a higher proportion of the

brighter upper canopy at oblique view angles than is viewed at nadir and

slightly off-nadir angles. For incomplete canopies, off-nadir viewed

visible and NIR reflectances differ because of the contrast in reflectance

of soils and vegetation with respect to these wavelength regions. Soils

have a relatively high visible reflectance as compared to vegetation and

a strong backscattering characteristic while in the NIR soils generally
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have a lower reflectance than vegetation and the backscattering component

is not as strong as in the visible. Therefore, for an incomplete canopy,

the visible reflectance shows a strong asymmetry about nadir with minimum

reflectances occurring at extreme off-nadir view angles and local maximums

occurring either side of nadir. For the NIR wavelengths, the response for

full and incomplete canopies is similar with a minimum at nadir and

increasing reflectance with increasing view zenith angle (Kimes, 1983).

Kirchner et al. (1981), using simulated data, found the effects of

off-nadir viewing more pronounced in the red than the NIR. Similar

results have been observed for an alfalfa canopy (Kimes, 1983). In

contrast, Barnsley (1984) using a narrow band airborne multispectral

scanner (MSS) found the greatest response to off-nadir viewing to be in

the NIR rather than in the red. He suggested that the differences were

possibly due to the fact that Kimes (1983) used an instrument replicating

the relatively wide bands of the AVHRR (Advanced Very High Resolution

Radiometer) aboard NOAA meteorological satellites. Kirchner et al. (1982)

observed that as the leaf area increases, the variation in reflectance

with changing view zenith angle decreases for visible wavelengths but

increases in the NIR. As the canopy geometry becomes more horizontal the

effects of off-nadir viewing decrease for all wavelengths (Kirchner et al,

1981; Kimes, 1983).

Off-nadir viewing effects are enhanced at large solar zenith angles

(Kriebel, 1978; Kirchner et al., 1981) and are maximized when the scanning

direction is parallel to the incoming direct solar radiation, i.e. viewing

in the solar principal plane (Royer et al., 1985). Kimes (1984) and

Slater and Jackson (1982) used ground-based reflectance raasurements and
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an atmospheric radiative transfer model to simulate satellite measured

radiances for different atmospheric optical depths. Both found that the

atmosphere caused an increase in off-nadir response, with the variation in

response increasing with increasing atmospheric turbidity. Holben et al.

(1986), also simulating atmospheric effects, found that the atmosphere

changed the magnitude of response relative to the surface but did not

alter the off-nadir trend (i.e. the shape of the off-nadir response

curve). Results from MSS data taken from an aircraft show that scan angle

contrast (relative increase between minimum and maximum radiance)

increases with increasing atmospheric turbidity (Royer et al., 1985).

Vegetative indices

Combinations of spectral bands (vegetative indices) have been designed

to exploit the differences between the reflectance of green vegetation and

its soil background. An ideal vegetation index (VI) would also retain

maximum sensitivity to crop characteristics while being relatively

unaffected by solar angle, atmospheric turbidity, topography, and viewing

direction (Pinter et al., 1987b). Unfortunately, an ideal VI does not

exist. However, some of the changes in individual wave band reflectances,

due to the external factors mentioned above, can be compensated for by

ratioing individual wave bands or using linear combinations of wave bands.

The most commonly used ratio indices are the simple ratio vegetation index

(SRVI) which is the ratio of reflectance/radiance in the near-infrared

(NIR) to the reflectance/radiance in the red (R) portion of the ENS (i.e.

NIR/R) and the normalized difference vegetation index, NDVI - (NIR-
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R)/(NIR+R). Linear combinations are usually orthogonal transformations

such as the 2-dimensional perpendicular vegetation index (PVI) (Richardson

and Wiegand, 1977) and the 4-dimensional tasselled cap transformation

(Kauth and Thomas, 1976). These indices assume that soil, vegetation, and

other spectral features are non-interacting and therefore can be added

linearly to come up with the composite reflectance. However, this is not

the case.

Though variations in reflectance data due to changes in the soil

background are reduced by transforming data into VIs (Kollenkark et al.,

1982; Walburg et al., 1982), the soil background condition still exerts a

considerable influence on the calculated VI for incomplete canopies. For

a given amount of vegetation, darker soils result in higher values for

both the SRVI and NDVI as compared to lighter soils. The opposite occurs

with the PVI, with brighter soils resulting in higher index values for a

given quantity of incomplete vegetative cover than darker soils (Huete,

1988). Recently, some VIs have been developed that are intended to remove

the effects of varying soil moisture on canopy reflectance with a specific

soil background (Huete, 1988; Clevers, 1988), but the application of these

indices to a large area where a mixture of soil types exist is

impractical.

In most instances, atmospheric effects reduce the value of the VI

(Holben and Fraser, 1984). However, interactions with the effects of soil

and canopy geometry causes deviations from this trend. Huete and Jackson

(1988), using a radiative transfer model to simulate the atmospheric

effect on reflected radiation, observed that atmospheric induced

reductions in the SRVI and NDVI were greatest over canopies with darker
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soils and were not detectable over canopies with light colored soils.

Degradation of the PVI was consistent for all soil backgrounds. Deering

and Eck (1987) reported an increase in atmospheric turbidity decreased

NDVI for two partial cover orchard grass canopies but increased NDVI for

a full cover soybean canopy. Results from Jackson et al. (1980) and

Pinter et al. (1987a) show how the SRVI was able to normalize atmospheric

variations due to variable cloudiness.

Kirchner et al. (1981), using simulated data, reported an increase in

NDVI with increasing solar zenith angle. Kanemasu (1974) found that the

ratio of green reflectance to NIR reflectance was apparently not

influenced by !hanges in solar zenith angle.

In a laboratory experiment, Wardley (1984) indicated that ratio VIs

are less affected by viewing geometry then non-ratioed indices. In

contrast, ground-based reflectance measurements from a wheat canopy at

full cover indicated that greenness (a non-ratio VI) displayed less

variability with viewing geometry than the SRVI (Pinter et al., 1987b).

Vygodshaya et al. (1989) used a theoretical argument to conclude that the

SRVI and NDVI would be invariant to changes in canopy geometry, whereas,

the PVI would be highly sensitive to changing canopy geometry. Spectral

reflectance and canopy geometry data from an experiment with alfalfa

support this conclusion (Moran et al., 1989).

Many of the various VIs are highly correlated to each other and none

can be ranked as superior (Ahlichs and Bauer, 1983). Perry and

Lautenschlager (1984) showed that several widely used VIs are functionally

equivalent. NDVI is the most widely used vegetation index because of its

ability to partially compensate for changing illumination conditions,
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surface slope, and viewing aspect (although, the evidence is certainly not

clear that it does all these things better than any other VI).

Relationship between VIs and biophysical parameters

Strong correlations between various VIs and biophysical parameters

such as fraction of ground cover, wet and dry biomass, leaf area index

(LAI), and plant water content have been found (see for e.g. Tucker 1980;

Holben et al., 1980). Because certain biophysical variables are highly

correlated to each other, some of the relationships between biophysical

variables and VIs can be considered redundant (Kimes et al., 1981). Basic

questions still remain concerning the linearity of these relationships and

the extent of their applicability.

Most commonly, the relationships between VIs and biophysical

parameters are reported as linear or quadratic even though there may be no

physical or biological reasoning behind these types of relationships. In

many cases, a limited growth or exponential model makes more physical

sense. NDVI has a nonlinear asymptotic relationship with LAI while the

SRVI has a more linear relationship with LAI, at least at high [AIs

(Holben et al., 1980). Best and Harlan (1985) found exponential models of

spectral data in the form of various VIs accounted for more of the

variance in [AI than a linear regression model derived from stepwise

multiple regression techniques. Tucker (1979) concluded that the

accumulation of standing dead vegetation had a linearization effect upon

the relationship between quanity of vegetation and the various VIs.
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Weiser et al. (1986) reported that the direct relationship between VIs

and gross biophysical parameters such as LAI were site dependent and time

specific. On a single site study, Aase and Siddoway (1980) found separate

relationships between NDVI and LAI for different planting densities of

winter wheat. Dave (1980) simulating different atmospheric conditions

found that the regression parameters for the relationship between the SRVI

and leaf water content were dependent on the atmospheric aerosol content.

Even though it is generally agreed that VIs account for more of the

variation in biophysical parameters than single band reflectances,

certainly no one VI can be considered as best. Gardner et al. (1985)

found that the best prediction equations for several different agronomic

parameters always contained at least two ratios. Dusek et al. (1985)

found ratio VIs to have higher coefficients of determination with five

plant parameters than orthogonal transformations. The commonly used SRVI

produced considerably lower coefficients of determination than many other

ratio VIs. Because the NDVI becomes less sensitive to vegetation at high

LAIs and the SRVI is not as sensitive to vegetation as NDVI at low LAIs,

Jackson et al. (1983) concluded that no one VI can optimally assess

vegetation over an entire growing season and that using several indices

may help determine whether VI values changed from one data acquisition

period to the next because of changes in vegetation, soil background, or

atmospheric conditions.

The penetration of light into a vegetative canopy is basic to the

understanding of the photosynthetic productivity of a crop (Sinclair and

Lemon, 1974). In a healthy crop, adequately supplied with water, the

production of dry matter (DM) is proportional to the amount of
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photosynthetically active radiation (PAR) absorbed by the canopy. More

specifically, (from Daughtry et al., 1983)

DM - E APAR * I , * Ec At

where,

APAR - Daily fraction of absorbed photosynthetically active radiation.

Ip= - Quantity of incoming PAR radiation, MJm-2 day- 1.

Ec - Efficiency of conversion of radiant energy to dry matter, gK-J" (a

function of the availability of water and nitrogen).

t - time period, day.

The daily fraction of APAR is a difficult parameter to quantify. APAR

changes throughout the day as the solar zenith angle and canopy geometry

interact to determine the probability of gap. Subsequently, a single

measurement of APAR is not likely to be representative for the whole day.

Most researchers have taken APAR measurements at solar noon, when APAR is

at its minimum value, to represent the daily estimate of APAR. Using

solar noon measurements to estimate daily APAR for an erectophile canopy

may underestimate daily AFAR by as much as 50% (Richardson and Weigand,

1989).

Several theoretical models have been developed to predict AFAR for a

vegetative canopy (e.g. Anderson, 1966; Cowan, 1968). These models

generally take a form of the Bouger-Lambert law where the extinction of

direct radiation is an exponential function of leaf area and an extinction

coefficient (K), i.e. APAR - (1 - exp(-K * LAI)). The extinction

coefficient, K, is a function of solar zenith angle and canopy geometry

(Sinclair and Lemon, 1974). These same parameters also directly affect

canopy reflectance. Therefore, spectral reflectance in the form of a VI
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may be a good estimator of APAR. Tucker and Sellers (1986) used a

theoretical argument to conclude that canopy reflectance is a more

reliable indicator of APAR then of a purely structural parameter such as

LAI. Wiegand et al. (1986) added that 7Is may provide a more accurate

monitor of crop photosynthetic capacity than 1AI since spectral indices

can respond to non-leaf photosynthetically active organs. In fact,

Daughtry et al. (1983) showed that the VI greenness was a better predictor

of APAR than LAI.

The capacity to estimate APAR from VIs is significant since the canopy

reflectance will often reflect differences in agronomic management

techniques (Crist, 1984), lessening the need for detailed knowledge of

management practices and increasing the feasibility of applying the

relationship between APAR and VIs to large areas (Wiegand and Richardson,

1984). Results from Hatfield et al. (1984) showed that the relationship

between APAR and NDVI for wheat was the same from year to year and

independent of planting date. Wieser et al. (1986) found that LAI and

phytomass could be more consistently estimated !ndirectly from APAR

estimates based on VIs from year to year and site to site than directly

from VIs.

As with the relationship between VIs and other agronomic parameters,

there is no consensus on the linearity of the relationship between Vis and

APAR. Kumar and Monteith (1981) made a theoretical argument for the SRVI

being linearly related to APAR while, Asrar et al. (1984) and Sellers

(1985) showed APAR to be linearly related to NDVI and nonlinearly related

to the SRVI. An exponential relationship has been observed between the

SRVI and APAR for sugar beets (Steven et al., 1983) while quadratic
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equations have been fit for the relationships between various VIs and APAR

data from corn (Gallo et al., 1985). Choudhury (1987) found the

relationship between VI and APAR to be curvilinear with curvilinearity

decreasing as the magnitude of the soil reflectance increased. He also

observed that while the curvilinearity between NDVI and APAR increased

with increasing solar zenith angle, the curvilinearity between the SRVI

and APAR decreased with increasing solar zenith angle. Recently, Bartlett

et al. (1990) observed a linear relationship between AAR and NDVI and

suggested that the relationship would hold over a range of solar zenith

angles because APAR and NDVI change with solar zenith angle in a similar

manner.
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EXPERIMENTAL METHODS

Field work for this research project was conducted at the University

of Nebraska Agriculture Research and Development Center near Head, NE (41"

09'N, 96" 30'W, 354m AMSL) in an irrigated alfalfa (Medicago sativa L.)

field during the 1990 growing season from May through September.

Bidirectional multispectral reflectance factors, APAR, and various canopy

and soil parameters were measured. Alfalfa management practices allow a

repeated opportunity to observe a range of leaf area indices (LAIs) during

one growing season.

Experimental plots

Experimental plots were set up in a 2.8 ha stand of 'Perry' alfalfa

planted (drilled, rolled) on 21 Apr 1988; the field was well established

with the original N-S row structure not readily evident by the time of

this experiment. The soil was a Sharpsburg Silty Clay loam which is very

dark grayish brown (2.5Y 3/0) in color when wet and grayish brown (2.5Y

5/2) when dry. Eight plots were defined based on visually determined

canopy uniformity. Adjacent plots formed a block with odd number plots

measured prior to solar noon (AM) and even number plots measured at solar

noon and after (PM) (Fig. 1). Agronomic data requiring destructive

collection methods were collected to the north and south of areas in which

spectral data were collected.
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Fig. 1. Layout of research plots and supporting instrumentation.
Agronomic measurements were taken to the north and south of depicted
circles which indicate areas of spectral measurements.
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Agronomic measurements.

Agronomic measurements included, leaf area index (LAI), mean tilt angle

(NTA), canopy height, above ground dry phytomass weight, and soil

moisture. LAI and MTA were estimated from measures of radiation less than

0.490 pm incident above and transmitted through the alfalfa using a LI-COR

LAI 2000 Plant Canopy Analyzer (LI-COR, Lincoln NE). LAI estimates were

made one or two times a day (early AM and/or mid PM) with a 90" view

restrictor placed on the lens of the LAI-2000. The portion of the alfalfa

plot used for LAI estimates was shaded with a 0.9m by 0.6m piece of

plywood to meet the diffuse lighting requirement for proper use of the

LAI-2000. MTA was estimated after every run using the LAI-2000 with the

same procedure as for LAI with the exception that the canopy was not

shaded. Direct sunlight does not affect the MTA estimation (LAI 2000

instruction manual). Dry above ground phytomass weight for each plot was

determined by oven drying a 0.1m2 harvested area to the south of the

spectral measurement area. Canopy height was inferred from the average of

three height measurements from each plot area taken with a meter stick.

Gravimetric means were used to determine the average percent soil moisture

by mass of three 0.15m soil cores centered at 0.15, 0.45, and 0.76m depths

at each plot, north of spectral measurement area. Additionally, the

Munsell color code (Munsell Soil Color Chart, Macbeth Division of

Kollmorgen Inst. Corp., Baltimore MD) was used to characterize the soil

surface color in each plot area at mid-morning and mid-afternoon.
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Leaf optical measurements

Leaf transmittances and reflectances were calculated from transmitted

and reflected PAR measurements using a LI-COR LI-1800-12 Integrating

Sphere equipped with a LI-190SA quantum sensor. Voltage outputs were

recorded on an Omnidata Polycorder. Measurements were made throughout the

study period on adaxial and abaxial alfalfa terminal leaflet surfaces from

upper and lower canopy portions.

An SE-590 spectrometer (Spectron Engineering, Denver, CO) was used

with the Integrating Sphere to measure the spectral response of abaxial

and adaxial leaflet surfaces from forty leaves on Day of Year (DOY) 268.

The narrow band responses as measured with the SE-590 were then integrated

over the bandwidths sensed by the multiband radiometer used in the

experiment.

Reflectance factor measurements

Canopy bidirectional reflectance factors (BRFs) were derived from

measurements taken over canopy and reference panel targets with a Barnes

12-1000 Modular Multiband Radiometer (MMR) and recorded on a series 700

polycorder (Omnidata Intl. Inc., Logan, UT). The MMR produces a voltage

proportional to scene radiance in seven reflective wavelength bands from

visible to middle infrared and one in the thermal infrared region which

was not used in this study. These spectral bands are the same as aboard

the LANDSAT Thematic Mapper (TM), except the MMR has an additional near-

infrared wavelength band (Table 1). The radiometer was attached to a
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pivoting extension atop a three meter aluminum mast (Fig. 2). The AMR was

set with a 150 instantaneous field of view (FOV). The pivoting extension

allowed orientation of the MHR at view zenith angles (VZAs) ranging from

50* (forward-scatter direction) to -50* (backscatter direction). The

footprint at ground level varied from 0.49m2 at a nadir view to 1.9m2 for

a VZA equal to ± 50° (Fig. 3). Additionally, a 35mm camera was attached

to the same bracket as the MMR and color photographs were taken at -50,

50, and 0 ° VZAs to provide a permanent record of the targeted scene.

Occasionally, photographs were taken at all measured VZAs.

TABLE 1

Nominal wavelength intervals of the Barnes MMR and equivalent Thematic
Mapper (TM) spectral bands.

MMR Band Wavelength (pm) TM Band

1 0.45 - 0.52 1

2 0.52 - 0.60 2

3 0.63 - 0.69 3

4 0.76 - 0,90 4

5 1.15 - 1.30

6 1.55 - 1.75 5

7 2.08 - 2.35 7

8 10.4 - 12.5 6

The MMR was always orientated to view in the solar principal plane. Prior

to DOY 171, VZAs were measured with an inclinometer held against the lever

arm attached to the MMR bracket. Estimated VZA measurement error was ± 2"

with this technique. Subsequently, VZAs were measured using an electronic

level (Smartlevel, Wedge Innovations, Sunnyvale, CA) attached to the MMR
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Fig. 3. Ground level footprint as a function of view zenith angle(e)
for 15* FOV and sensor height of 3m.
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bracket improving VZA measurements to ± V. During very windy conditions

VZA measurement errors increased slightly.

Data collection was bracketed around solar zenith angles (SZAs) of

550 through solar noon at 100 increments. The number of SZAs represented

on a given day was a function of sky condition as well as the time of

year. At most nine SZAs (55, 45, 35 and 25 before and after solar noon as

well a solar noon of 18°) were represented on DOY 176. In contrast, only

five SZAs (55 and 45 before and after solar noon as well as a solar noon

of 43°) are represented on DOY 267, the last day of field measurements.

Every effort was made to take measurements only when the direct solar path

was free of clouds. Each data set required between 15 and 20 minutes to

complete. Canopy spectral measurements were expressed as bidirectional

reflectance factors (BRFs) which correct for irradiance differences and

facilitate comparison within and among dates (Bauer et al., 1981). The

reflectance factor was calculated as the ratio of the output voltage

proportional to the spectral response measured over the canopy to the

output voltage proportional to the irradiance. Irradiance was inferred

from nadir-viewed MMR measurements over a calibrated 1.2m x 1.2m molded

Halon panel (Labspere Inc., North Sutton, NH) horizontally leveled within

the field. The Halon panel reflected data were obtained at the start and

finish of each measurement sequence (run). A time based linear

interpolatioa waq used to estimate irradiance from these data at the time

when individual targets were measured (Robinson and Biehl, 1979).

Correction factors were applied to the Halon data to compensate for the

non-Lambertian behavior o' 'he panel, a function of the changing SZA
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(Kimes and Kirchner, 1982). Correction factors for the Halon panel were

derived from the technique of Jackson et al. (1987).

APAR measurements.

APAR values were calculated based on the measurements made with a LI-

191SA line quantum sensor (LI-COR, Lincoln, NE) which produces a output

voltage which is converted to radiance and recorded on a series 516

Polycorder. Measurements were made in each plot immediatel after the MMR

measurements. The line quantum sensor was orientated perpendicular to the

solar principal plane so that APAR measurements were made in the same

plane as MMR measurements. The following sequence of measurements with

the line quantum sensor was repeated three times for each plot:

I) Upright about 0.5m above the canopy for measure of PAR irradiance

(PAR);

2) Inverted over the canopy at the same height as the incident PAR

measurement for measurement of canopy reflected PAR (RPAR0 );

3) Inserted in the canopy in an upright position at the soil surface for

measurement of transmitted PAR (TPAR); and

4) Inserted in the canopy but inverted approximately 5cm above the soil

surface for reflected PAR from the soil surface (RPAR,).

APAR was calculated as, APAR - 1 + (RPAR, - TPAR - RPAR,)/PAR.
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Meteorological measurements

Micrometeorological data useful for describing the conditions under

which measurements were made were collected on days when spectral data

were acquired. Temperature, relative humidity (RH), wind speed and

direction were collected using a Campbell 207 Temperature/RH sensor

(Campbell Scientific, Logan, UT), and a Met One Wind sensor (Met One Inc.,

Grant Pass, OR) mounted on a Campbell Scientific meteorological station

3m tripod at standard instrument heights. Total and diffuse incoming

Solar and PAR radiation were measured using two LI-200SA Pyranometer

sensors and two LI-190SA Quantum sensors (LI-COR Inc, Lincoln, NE).

Diffuse components were measured by mounting one of each sensor under

shadow bands built to LI-COR specifications. A correction factor was

applied to the data to account for that part of the total diffuse

radiation obstructed by the shadow band (LI-COR 2010S Miniature shadow

band Instruction manual). All four sensors were mounted at a height of

l.5m on an A-Frame located approximately 4m south of the meteorological

station (Fig. 1). All micrometeorological data were recorded on a

Campbell Scientific CR21-X data recording micrologger. Prior to DOY 241,

all data were recorded in five minute averages. Subsequently, data were

recorded in one minute averages to provide a better indication of short

term variability of sensed parameters. Additionally, hemispherical sky

photographs were taken before and after each data run to provide a

permanent record of sky condition.
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Statistical analysis

The experimental design was a split-split plot with a whole plot

treatment factor of time of day (AM vs PM). The first split plot

treatment was solar zenith angle (SZA) with four levels (25, 35, 45, 55)

and the second split plot treatment was view zenith angle (VZA) with

eleven levels (± 50, ± 40, ± 30, ± 20, ± 10, 0). Adjacent AM and PM plots

formed a block (Fig. 1). The ground resolution element or footprint was

the experimental unit (Fig. 3). Mean values for the BRFs, VIs, APAR, LAI,

and MTA along with the regression parameters for the relationships of

interest (APAR,LAI vs VIs) were computed for each plot for each SZA and

VZA combination for a total of 352 mean values or pairs of regression

coefficients. Linear regression using the least squares method of

estimation was used in all cases with appropriate transformations made for

exponential or logarithmic curves. Analysis of variance (ANOVA) was

performed on the resulting means and regression coefficients and

appropriate tests were made for significant differences of relationships

between VIs, LAI and APAR at different SZAs and VZAs at a - 0.05. Table

2 shows a skeleton ANOVA with sources of variation, degrees of freedom,

and appropriate F ratio.
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TABLE 2
Skeleton analysis of variance table with sources of variation, degrees of
freedom, and appropriate ratio of mean square values (F ratio) to test for
significance of differences due to the main effects of AM versus PH (AKPM),
solar zenith angle (SZA), and view zenith angle (VZA) and their
interactions.

Source of Variation Degrees of Freedom Test F Ratio

BLOCK 3

AMPM 1 AMPM/BLOCK*AMPN

BLOCK * AMPM 3

SZA 3 SZA/SZA*BLOCK(AHPM)

SZA * AMPM 3 SZA/SZA*BLOCK(AMPH)

SZA * BLOCK(AMPM) 18

VZA 10 VZA/ERROR

VZA *AMPM 10 VZA*AMPM/ERROR

VZA *SZA 30 VZA*SZA/ERROR

VZA * SZA * AHPH 30 VZA*SZA*AMPN/ERROR

ERROR 240

TOTAL 351
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RESULTS AND DISCUSSION

Spectral. and agronomic measurements were taken on 24 days with a total

of 107 data runs. Sky condition was subjectively classified for each run

as either steady (S) or variable (V) based on a review of recorded direct

and diffuse irradiance data. Table 3 provides a summary of the

acquisition dates; an "S" or "V" sky condition designator is placed at

each solar zenith angle (SZA) at which spectral data were taken.

Data were taken at all four SZAs before and after solar noon on only

two occasions (DOY 176, 218). To use all data less that taken at solar

noon in an analysis of variance (ANOVA) would violate the assumption of

homogeneity of error variance since the SZAs are not equally represented

(i.e. treatments have different sample sizes). The F test for treatment

differences is fairly robust to this violation (K.M. Eskridge, Biometry

Dept., Univ. of Nebraska-Lincoln, personal communication), however, two

subsets of data were created to duplicate some of the statistical test.

One data set, which will be referred to as SYN (symmetrical with respect

to solar noon), consists of data runs where both AM and PM measurements

were made for a particular SZA during the same day. These data were

tested using both split-split plot and split-plot (data grouped by SZA)

designs. The second data set, which will be referred to as AMBAL (the

SZAs are equally represented, i.e. balanced), consist of the six days (DOY

137, 173, 176, 212, 218) where all four levels of SZA were measured prior

to solar noon. Additionally, a data set was formed by first averaging the

data across the plots for a run. This data set is not appropriate for

statistical tests since it smooths out the plot to plot variability but by
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TABLE 3.
Summary of data acquisition periods by day of year (DOY) and solar
zenith angle (SZA). S (steady) and V (variable) refer to sky
condition during data run. Leaf area index (LAI) is the mean for
day.

Solar Zenith Angle

AM PM

DOY 55 45 35 25 SN 25 35 45 55 LAI Comments

130 V V 3.72

137 S S S S S S S S 4.02

148 S V V 4.57

149 S 4.68

155 S S S V 4.07 Canopy lodged

171 S S V V V V S S 0.80 Soil 2.5Y 3/2
(moist)

173 S S S S V 0.89 Soil 2.5Y 5/2
(dry)

176 S S S S S V V S V 1.39 Insect damage

noted

179 S S S S S 2.29 Windy

198 V 0.41

204 S 0.41

212 S S V V V V 1.43 Heavy AM dew

218 S S S V V V V V 1.82 Light AM dew

220 S S S S 1.67

221 S S V V V 2.00

229 S S 2.79

241 V V V 0.29

242 S S S 0.33

243 S S S S 0.47

247 S S S S S S 0.70

249 S S S S 0.97

255 S S V S S 1.39
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doing so it better simulates air or satellite-borne sensor data and is

useful in identifying general trends. This data set will be referred to

as AVG (it represents average values for a data run). Statistical tests

from SYM and AMBAL will be compared to tests made of the data set for all

data less that taken at solar noon, hereafter referred to as the LSN (less

solar noon) data set. Regression parameters tested with the SYM and AMBAL

data sets are based on only five to eight points while from eight to

eighteen points are used to estimate the regression parameters with the

LSN data set.

A more detailed description of the environmental conditions for each

data run as well as the coefficient of variation (CV) across the eleven

VZAs for band 3 (red) and band 4 (NIR) BRFs, NDVI, and SRVI can be found

in Appendix A. Table 4 provides the Pearson correlation coefficients, r,

between selected environmental and canopy parameters and these

coefficients of variation. The Pearson correlation coefficient provides

a measure of the strength of the linear relationship between two

variables. By far, the largest influences with respect to a linear

relationship on the variations in BRFs and VIs across the measured VZAs

are the SZA and the LAI. Though a low r value does not necessarily

indicate that two variables are not correlated (i.e. they may be

correlated in a non-linear manner), for this analysis, it is assumed that

changes in environmental conditions other than SZA (i.e. the fraction of

diffuse PAR radiation (XQDIF), sky condition (steady or variable),

relative humidity (RH), and wind (speed and direction)) did not have a

significant impact on band 3 and band 4 BRFs and subsequently calculated

VIs.
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Table 5 lists the daily means and standard deviations for the

agronomic parameters measured. The alfalfa was harvested on three dates

(DOY 155, 192, 234) and was irrigated only after the first cutting.

Little change was noted in the soil color over the experimental period as

observed using the Munsell color code, therefore, changes in reflectance

as a result of soil moisture differences were considered to be minimal.

The minimum, maximum and mean coefficients of variation for red and

NIR BRFs and NDVI, SRVI across all VZAs and APAR and LAI by data run are

listed in Table 6. These data indicate that variability of measurements

of LAI and APAR are similar to that exhibited by the VIs as a result of

view zenith angle changes.

General trends In spectral measurements

Review of the sun-sensor-target geometry is appropriate to

understanding trends in spectral data. Alfalfa is a diaheliotropic plant,

following the sun as it progresses across the sky. However, most of this

movement with the sun is azimuthal with very little change occurring in

leaf orientation with respect to the horizontal (Travis and Reed, 1983).

The solar tracking is most pronounced at large SZAs (Moran et al., 1989).

In this experiment, tracking was visually obvious for SZAs greater than

35" as almost all the leaves were azimuthally aligned perpendicular to the

solar principal plane. The mean tilt angle (MTA) of the alfalfa

progressed from near vertical after cutting to around 50° from the

horizontal when mature (Fig. 4). The average MTA was 53° and the average

LAI was 1.86. Fig. 5 schematically shows the geometry between the average

MTA and solar and view angles significant to the interpretation of
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TABLE 5
Daily means and standard deviations (SD) for measured
agronomic parameters of Leaf Area Index (LAI), Canopy height
(Canopy Hgt), Above Ground Dry Weight (ABGDWT), and percent
soil moisture mass.

Canopy Hgt ABGDWT Percent Soil
LAI (cm) (gm-1) Moisture Mass

DOY Mean SD Mean SD Mean SD Mean SD

130 3.72 0.65 36 2 389 81 24.85 1.52

137 4.02 0.43 48 3 433 59 25.55 1.11

148 4.57 0.55 69 3 534 118 25.83 2.02

149 4.68 0.35 - - - - - -

155 4.07 0.55 65 10 822 103 22.83 1.74

171 0.80 0.20 16 5 137 28 25.56 2.87

173 0.89 0.41 27 5 134 48 26.89 2.29

176 1.39 0.30 37 5 123 37 25.48 2.77

179 2.29 0.25 43 5 238 66 23.70 2.41

198 0.20 0.09 9 1 - - - -

204 0.41 0.08 12 2 148 36 - -

212 1.43 0.31 22 3 183 45 23.71 1.97

218 1.82 0.39 32 5 191 44 23.71 2.32

220 1.67 0.50 36 3 192 44 - -

221 2.00 0.54 38 2 249 70 23.98 2.49

229 2.79 0.59 50 3 396 62 23.54 2.65

241 0.29 0.05 12 2 66 23 21.17 1.60

242 0.33 0.05 11 1 82 21 20.53 1.76

243 0.47 0.18 12 1 113 22 20.80 2.59

247 0.72 0.20 23 2 138 29 - -

249 0.97 0.25 25 2 164 33 - -

255 1.46 0.37 33 5 238 43 21.40 2.27

257 1.62 0.47 34 4 240 45 - -

267 2.27 0.39 39 4 293 52 19.62 2.12
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TABLE 6
Minimum, maximum and mean coefficient of variation by run for
red and NIR bidirectional reflectance factors (BRFs), NDVI,
SRVI, APAR, and LAI. Coefficient of variation for BRFs, NDVI,
and SRVI for all view zenith angles.

Coefficient of Variation (Z)

Red NIR NDVI SRVI APAR LAI

Minimum 16 6 1 7 1 8

Maximum 42 27 21 43 71 45

Mean 29 18 9 25 22 23
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Fig. 4. Mean leaf tilt angle as a function of leaf area index.
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Fig. 5. Sun-view-target geometry for leaf angled 55" from horizontal
where e. and e, are the solar and view zenith angles, respectively.
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reflectance trends. As the SZA (0.) increases from 25° to 55° a leaf

inclined at 55° will exhibit a more La bertian reflectance pattern

(Walter-Shea et al., 1989). At 93 of 25° much of the reflectance from a

leaf will be directed downwards toward the soil (strong forward

scattering) while at 0 of 550 (normal incidence) the reflectance

distribution is near-Lambertian, changing little with view angle. Also,

a sensor viewing in the backscatter direction will see mostly sunlit

adaxial (top) leaf surfaces while a sensor viewing toward the sun (forward

scatter direction) will see mostly shaded abaxial (bottom) leaf surfaces.

Thus, the quantity of sensed radiation will be dependent on both solar and

view zenith angles.

Results of leaf optical measurements showed hemispherical PAR RFs to

be statistically different between adaxial and abaxial leaflet surfaces.

PAR reflectances ranged from 8-10% for adaxial surfaces and 12-16% for

abaxial surfaces indicating a higher concentration of chlorophyll and

other light absorbing pigments along the top surface of the leaf.

Transmittances of PAR through both leaf surfaces were similar (3-7%). PAR

ceflectance and transmittance for both sides of the leaflet gradually

decreased as LAI increased. NIR reflectance and transmittance were

similar both in magnitude (46-48%) and with respect to the adaxial versus

abaxial surfaces.

Statistical test results on time averaged (average for all LAIs) red

and NIR canopy BRFs and VIs from the LSN data set are given in Table 7.

Data appear symmetrical about solar noon (insignificant AMPM main effect),

however, the significance of the VZA * AMPM interaction term complicates

the interpretation of the AMPM main effect. The significance of the VZA
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TABLE 7.
Probability of a larger F value for ratio of appropriate mean
square errors to test significance of source of variation.
Probability < 0.05 indicates differences in red and NIR
bidirectional reflectance factors and normalized difference and
simple ratio vegetative indices (NDVI, SRVI) (from LSN data
set) as a result of source of variation are significant.

Probabilty > F

Source of Variation Red NIR NDVI SRVI

AMPM 0.63 0.43 0.53 0.62

SZA 0.00 0.00 0.00 0.00

SZA * AMPM 0.10 0.19 0.22 0.16

VZA 0.00 0.00 0.00 0.00

VZA * AMPM 0.04 0.00 0.00 0.01

VZA * SZA 0.00 0.00 0.57 0.01

VZA * AMPM * SZA 0.87 0.10 0.73 0.46
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* AMPM term implies that the AMPM differences in BRFs and VIs are

dependent on VZA. The statistical test run on the SYM data set grouped by

SZA (split-plot design) indicate that VZA * AMPM interaction is not

significant for band 4 (NIR) or the VIs at SZAs of 45 and 55* but is for

SZAs of 25 and 35* (Table 8). VZA * AMPM interaction was not significant

for band 3 (red) at any of the SZAs. The significance of VZA * AMPM

interaction for the NIR BRFs and VIs at small SZAs is most likely the

result of a change in canopy geometry as alfalfa leaflet solar tracking

decreases and the leaflet azimuthal distribution becomes more uniformly

distributed at small solar zenith angles (Travis and Reed, 1983). VZA and

SZA effects are also significant as is the VZA * SZA interaction term

(except for NDVI). Thus, as indicated by previous research (eg. Kirchner

et al., 1982; Wardley, 1984), red and NIR BRFs, NDVI, and SRVI change as

view geometry changes and the amount of these changes is a function of the

SZA. Differences in BRFs and VIs with different view and solar zenith

angles can be attributed to changes in the amount of shadow and brightness

of the canopy components (vegetative and non-vegetative), and with the

case of alfalfa, changes in canopy geometry.

The SYM data set was used to show time averaged trends for the red and

NIR BRFs and VIs in the solar principal plane as a function of VZA for the

four SZAs (Figs. 6-9). AM and PM SZA data have been combined. The mean

LAIs associated with the data range from a low of 1.61 for SZA of 55* to

1.91 for SZA of 25. In the forward scatter direction, band 3 (red) BRFs

decrease as VZA increases, as the sensor sees more shaded vegetation and

less soil. At large VZAs in the forward scatter direction the decrease in

red BRF levels off. At small SZAs with less shadows overall, the
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TABLE 8.
Probability of a larger F value for ratio of appropriate mean
square errors to test for significance of source of variation for
specified solar zenith angle (SZA). Probability < 0.05 indicates
differences in red and NIR bidirectional reflectance factors and
normalized difference and simple ratio vegetative indices (NDVI,
SRVI) (from SYM data set) as a result of source of variation are
significant.

Probability of > F

Source of Variation SZA Red NIR NDVI SRVI

25 0.83 0.21 0.48 0.53

AKPM 35 0.96 0.72 0.93 0.47

45 0.45 0.50 0.44 0.51

55 0.47 0.26 0.41 0.47

25 0.00 0.00 0.00 0.00

35 0.00 0.00 0.00 0.00

45 0.00 0.00 0.01 0.00

55 0.00 0.00 0.02 0.00

25 0.10 0.00 0.04 0.01

VZA * AMPM 35 0.51 0.00 0.06 0.03

45 0.79 0.07 0.58 0.67

55 0.84 0.32 0.78 0.55
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Fig. 6. Red bidirectional reflectance factor (BRF) as a function of
view zenith angle at four different solar zenith angles (SZA). Negative
view zenith angle indicates backscattering.
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Fig. 7. Near-infrared (NIR) bidirectional reflectance factor (BRF) as
a function of view zenith angle at four different solar zenith angles
(SZA). Negative view zenith angle indicates backscattering.
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Fig. 9. SRVI as a function of view zenith angle at four different solar
zenith angles (SZA). Negative view zenith angle indicates
backscattering.
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reflectance levels out at about a VZA of 40", while at higher SZAs with

more shadows the minimum reflectance is reached at about a VZA of 30". In

the backscatter direction, reflectance increases due to the strong

backscattering characteristics of soil and the sensor viewing a greater

amount of sunlit vegetation than is viewed in the forward scatter

direction. A "hot spot" in the backscatter direction, as has been

observed by Deering and Middleton (1990), is not detected because of the

shadow cast by the HMR. The rapid leveling off of red BRF at SZA of 25°

could be the result of a combination of the shadow effect of the MHR and

the fact that at this incidence angle most of the radiation penetrates

into the canopy. For most VZAs the red BRF decreases with increasing SZA

because of an increase in canopy shadows. Trends in Band 4 (NIR) BRF are

similar to those in the red, however, there are some differences. In the

forward scattering direction, after an initial decrease in reflectance

with increasing VZA, the NIR BRF increases gradually as VZA increases

beyond 30° due to the sensor viewing more vegetation and less soil.

Because transmittance through vegetation is high in the NIR as compared to

the red, the shadow effect in the NIR is not as strong as in the visible.

In the backscatter direction, the leveling off of NIR BRF at small SZA is

not as abrupt as for the red BRF because of the decreased influence of

shadows on the NIR BRF as compared to the red. In addition, the NIR BRF

increases with increasing SZA whereas the red BRF decreases. This can be

attributed to the fact that less light penetrates into the canopy as SZA

increases, reducing the influence of soil reflectance on the composite

canopy reflectance. The net effect is a decrease in red BRF and an

increase in NIR BRF with increasing SZA. These trends in red and NIR BRF
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are similar to those reported by Kirchner et al. (1982) for an incomplete

alfalfa canopy.

Generally, both NDVI and SRVI show an increasing trend in magnitude

from far backscattering to far forward scattering. The major exception to

this generalization is at small SZAs where both VIs increase as VZA

increases beyond 20" in the backscatter direction. This is a result of

the red BRF leveling off while the NIR BRF continued to increase as VZA

increased (became more negative) in the backscatter direction.

Red BRF decreases while NIR BRF increases with increasing LAI (Figs.

10-13). The general trends in BRFs with respect to view and solar zenith

angles at different LAIs are similar to those just described for the

average IAI. While both NDVI and SRVI increase with increasing [AI, their

trends with respect to view and solar zenith angle as [AI increases are

quite different. Whereas, the NDVI response with respect to solar and

view zenith angles becomes smoother with increasing LAI, the opposite

occurs for SRVI. This is a consequence of Band 3 losing its sensitivity

to changes in LAI as LAI increases and the different formulations for the

VIs.

Estlmatlon of LAI.

Scatter plots of LAI versus the VIs (Figs. 14-15) showed SRVI to have

a linear trend with LAI while NDVI showed an exponential relationship.

Overall regressions were performed to determine if adjusting the [AI for

the SZA would improve the goodness of fit (Wiegand and Richardson, 1990).
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Fig. 10. Red bidirectional reflectance factor (BRF) as a function of view
(0,) and solar zenith (represented as solar time) angles for different
alfalfa canopy LAIs.
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Fig. 11. Near-infrared (NIR) bidirectional reflectance factor (BRF) asa
function of view (0.,) and solar zenith (represented as solar time) angles
for different alfalfa canopy LAIs.
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Fig. 13. SRVI as a function of view (0,) and solaz zenith (represented as
solar time) angles for different alfalfa canopy lAIs.
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Fig. 14. Scatter plot of simple ratio vegetative index (SRVI) versus
leaf area index (LAI). Data averaged by run (AVG data set).
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Subsequently, the regression models for the estimation of IAI took the

following forms:

LAI - P0 + f1 * SRVI

ln(LAI/Cos(SZA)) - #o + l * NDVI

LAI was not adjusted for SZA when being estimated by the SRVI because

doing so increased the root mean square error (RMSE).

The Pearson correlation coefficient, r, provides a simple measure of

the goodness of fit for a linear relationship between two variables. The

Pearson correlation coefficients between the variables of the above linear

relationships are high for all view and solar zenith angles (Figs. 16-17).

For both relationships, the Pearson correlation coefficients increase as

SZA decreases during the morning hours but no consistent trend is seen

with regard to SZA in the PM. This difference in the trend in Pearson

correlation coefficients with SZA between AM and PM is reflected in the

ANOVA for the regression slope coefficients as a significant AMPM * SZA

interaction (Table 9). The ANOVA generated using the SYM data set on a by

SZA basis shows that while AMPM was not significant for SZAs of 45 or 55 ° ,

it was for SZAs of 25 and 35 ° (Table 10). As previously discussed, a

decrease or lag in leaflet solar tracking at small SZAs is the probable

cause for the differences in canopy reflectance which in turn are

affecting the relationships between VIs and LAI. The VZA main effect on

the regression parameters is significant for both relationships.

VZA main effects on the NDVI vs LAI regression parameters are most

evident in the far forward scattering direction where the slope

coefficient increases while the regression intercept decreases as VZA

increase beyond 20* (Fig. 18). Orthogonal contrast for linear and
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TABLE 9.
Probability of a larger F value for ratio of appropriate mean
square error to test significance of source of variation.
Probability < 0.05 indicates differences in regression slope
coefficients for stated relationship (from LSN data set) as a
result of source of variation are significant.

Probabilty > F

Source of variation LAI vs NDVI LAI vs SRVI

AMPM 0.12 0.00

SZA 0.17 0.00

AMPM * SZA 0.01 0.00

VZA 0.00 0.00

VZA * SZA 0.98 0.00

VZA * AMPM 0.90 0.29

VZA * AMPM * SZA 0.97 0.51
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TABLE 10.
Probability of a larger F value for ratio of appropriate mean
square errors to test for significance of source of variation
for specified solar zenith angle (SZA). Probability < 0.05
indicates differences in regression coefficients for stated
relationship (from SYM data set) as a result of source of
variation are significant.

Probability > F

Source of variation SZA LAI vs NDVI LAI vs SRVI

25 0.00 0.00

AMPM 35 0.04 0.01

45 0.10 0.08

55 0.66 0.20

25 0.21 0.00

VZA 35 0.12 0.00

45 0.03 0.00

55 0.34 0.00

25 0.37 0.07

VZA ARPM 35 0.70 0.93

45 0.63 0.70

55 0.58 0.84
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quadratic response of the regression parameters as a function of VZA were

both significant. No consistent trend with SZA is exhibited by the

regression parameters for the NDVI vs LAI relationship (Fig. 19) and none

of the orthogonal contrast (linear, quadratic, or cubic) were significant.

For the relationship between LAI and SRVI the regression parameters show

a strong functional relationship with VZA (Fig. 20). The slope

coefficient for the SRVI vs IAI relationship responds to changes in VZA in

a manner similar to the NIR response to VZA. The regression parameters

for the SRVI vs LAI relationship reflect the AMPM * SZA interaction with

different trends as a function of SZA between morning and afternoon (Fig.

21).

Appendix B provides a complete listing of the regression parameters

for the VIs vs LAI relationship, the coefficients of determination (r),

and the RMSEs for each combination of SZA and VZA for both the LSN and AVG

data sets. These data do not indicate that any combination of view and

solar zenith angles would consistently provide the best estimation of LAI.

It appears that a separate regression equation would be required to best

describe the relationship between LAI and VIs for different view and solar

zenith angle combinations and that these different regression parameters

are in some cases functionally related to the changes in view and solar

zenith angle. However, Figs. 22 and 23 show that high indices of

agreement can be obtained between measured LAI and LAI estimated from VIs

at all eleven VZAs using the regression equation established with nadir

data. The overall mean relative error is 11% for estimation of LAI by

SRVI and 6% for estimation by NDVI. The inability of NDVI to estimate

LAIs greater than 4.0 is evident in Fig. 22. The mean relative error
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Fig. 22. Measured LAI versus LAI estimated with NDVI from all view
zenith angles used in regression equation established using only nadir
data.
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between estimated (using off-nadir data with nadir derived equations) and

measured LAI changes with VZA in a manner similar to the VIs themselves,

increasing from far backscattering to far forward scattering VZAs (Fig.

24). This suggest that when using off-nadir spectral data in nadir

derived equations to estimate LAI of alfalfa, IAI is best estimated using

spectral data at off-nadir angles in the backscatter direction.

Estimation of APAR

Scatter plots of VIs and LAI vs APAR (Figs. 25-27) indicate that the

relationship between SRVI or LAI and APAR takes a limited growth

(monomolecular) form while the relationship between NDVI and APAR is

nearly linear. Some researchers have used a quadratic equation to

describe the NDVI vs APAR relationship (eg. Gallo et al., 1985) but since

there is no physical basis behind doing this, a linear equation was used

here. Therefore, the estimation equations for APAR took the following

forms:

APAR - f0 + P, * NDVI

ln(l - APAR) - fl + fil * SRVI

ln(l - APAR) - Po + fil * LAI/Cos(e 5 )

The strength of the linear relationship between VIs and APAR is best

for near-nadir VZAs and decreases as VZA increases beyond ± 20° (Fig. 28).

No consistent trend is seen for the Pearson correlation coefficient values

as a function of SZA for the relationships between APAR, NDVI and LAI

(Fig. 29). Except for a drop off at a SZA of 250, there is an increase in

the correlation coefficient as SZA decreases for the SRVI vs APAR
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Fig. 24. Mean relative error for estimation of IAI by normalized

difference and simple ratio vegetative indices (NDVI, SRVI) as function

of view zenith angle. Negative view zenith angle indicates
backscattering.
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Fig. 25. Scatter plot of simple ratio vegetative index (SRVI) versus
fraction of absorbed photosynthetically active radiation (APAR). Data
averaged by run (AVG data set).
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Fig. 26. Scatter plot of leaf area index (IAI) versus fraction of
absorbed photosynthetically active radiation (APAR). Data averaged by
run (AVG data set).
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versus fraction of absorbed photosynthetically active radiation (APAR).
Data averaged by run (AVG data set).
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Fig. 28. Absolute value of Pearson correlation coefficient for normalized
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function of view zenith angle. SRVI and ln(l-APAR) are negatively
correlated. Negative view zenith angle indicates backscattering.
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relationship. Results from the ANOVA on the regression parameters show

the significance of view and solar zenith angle changes on the

relationships (Table 11). The AMPM main effect was significant for the

estimation of APAR by NDVI and LAI regression parameters but not for the

APAR vs SRVI regression parameters. However, the VZA * AMPM interaction

term was significant for the SRVI vs APAR regression parameters. The

effect of SZA was significant for all tested estimators of APAR. VZA

effects were highly significant for SRVI vs APAR regression parameters but

not for NDVI using the LSN data set. However, the NDVI vs APAR regression

parameters were significantly (Prob > F - 0.00) dependent on VZA for both

the SYM and AMBAL data sets.

The change in regression parameters for the SRVI vs APAR relationship,

like those for the SRVI vs IAI relationship, show a smooth trend with

changing VZA (Fig. 30). These trends are mirror images of those

exhibited for the SRVI vs LAI relationship (Fig. 20). This is a result of

SRVI being positively correlated to LAI but negatively correlated to the

transformed APAR (ln(I-APAR)) required for the linear regression of SRVI

and APAR. Regression parameters for the NDVI vs APAR relationship as a

function of VZA (Fig. 31) change in a similar manner to the regression

parameters for the NDVI vs LAI relationship (Fig. 18). No functional

relationship appears to exist between SZA and any of the regression

parameters for the estimation of APAR (Figs. 32-34). Appendix C provides

a complete listing of the regression parameters of the VIs and LIA vs APAR

relationships, the coefficients of determination (r2), and the RMSEs for

each combination of SZA and VZA for both the LSN and AVG data sets. These

resilts indicate that, for all SZAs, APAR is best estimated from VIs
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TABLE 11.
Probability of a larger F value for ratio of appropriate mean
square error to test significance of source of variation.
Probability < 0.05 indicates differences in regression slope
coefficients for stated relationship (from LSN data set) as a
result of source of variation are significant.

Probability > F

Source of Variation APAR vs NDVI APAR vs SRVI APAR vs IAI

AKPH 0.03 0.36 0.04

SZA 0.00 0.00 0.00

SZA * AMPM 0.00 0.64

VZA 0.19 0.00

VZA * AMPM 0.99 0.00

VZA * SZA 0.99 0.32

VZA * SZA * AMPM 0.99 0.95
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derived from BRFs at nadir or slightly off nadir VZAs. Similarly, Novo et

al. (1989), in a laboratory experiment, found the relationship between

spectral reflectance and suspended sediment concentration (SCC) was "best"

when reflectance measurements were made with a nadir view zenith angle.

There does not appear to be any "best" SZA for estimation of APAR from

VIs. The overall regression parameters for the estimation of APAR by NDVI

from the AVG data set (0 - -0.52, 8 1 1.50) are very similar to those

found by Wiegand et al. (1990) (f0 - -0.49), 01 - 1.52) from pooled

spectral data taken over corn at different experimental sites. LAI best

estimated APAR at small SZAs.

Figs. 35 and 36 provide a measure of the error involved with using

data from all measured VZAs in a regression equation based on nadir BRF

data. With both VIs mean relative error for the estimation of APAR is

less than 7%. As with the estimation of LAI, it appears that the ability

for NDVI to estimate APAR drops off at high values of APAR (Fig. 35) while

SRVI estimates APAR poorly at very low values of APAR (Fig. 36). Mean

relative error for the estimation of APAR with VIs computed from nadir and

off-nadir data with a nadir-derived regression equation is greater for

oblique view angles in the forward scatter view direction than oblique

angles in the backscatter view direction (Fig. 37). This follows from the

way in which the VIs change as a function of VZA (Figs. 8-9), i.e. mean

relative change from nadir is less in the backscatter direction than in

the forward scatter direction. For estimation of APAR by LAI, mean

relative error is somewhat higher at 12.8% with a 0.986 D-index of

agreement (Fig. 38).
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Fig. 35. Measured APAR versus estimated APAR vith NDVI from all view
zenith angles used in regression equation established using only nadir
data.



85

0.9-

0.8

0.7-)

a-0.6

74-

0.3-

0.1-0l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Measured APAR

Fig. 36. Measured APAR versus estimated APAR with SRVI from all view
zenith angles used in regression equation established using only nadir
data.
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Fig. 37. Mean relative error of estimation of APAR by normalized
difference and simple ratio vegetative indices (NDVI, SRVI) as function
of view zenith angle. Negative view zenith angle indicates
backscattering.
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Estimation of above ground dry weight

Two approaches can be taken to use spectral reflectance data and leaf

area measurements to estimate above ground dry phytomass weight (ABGDWT):

1) The VIs and LAI can be used to estimate APAR which in turn is used to

estimate ABGDWT in a manner similar to that used to estimate total (above

and below ground) dry matter (DM):

DM - Z APAR * IW * EC At

where, APAR - Daily fraction of absorbed photosynthetically active

radiation;

I - Quantity of incoming PAR radiation, MJm 2day-1;

E- Efficiency of radiant energy conversion to dry matter,

gKJ"1 (a function of the availability of water and

nitrogen);

At - time interval, days;

and 2) A direct relationship can be established between the spectral data

in the form of VIs or LAI measurement and ABGDWT.

Since both APAR and VIs such as NDVI are functions of SZA (Fig. 39)

estimating daily values for these parameters can be complex. Ideally,

values are measured throughout the day to establish a relationship for

APAR/VI as a function of time of day which when integrated provides a

daily value for AFAR. In this study, linear regression was used to get

expressions for AAR, VIs, and LAI as functions of DOY. Daily values of

APAR/VIs could be roughly approximated since instantaneous values of

AFAR/VIs were measured at different SZAs. Separate regression lines were

fit for VIs derived from nadir and ± 50" VZAs as a means of accounting for
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Fig. 39. APAR and NDVI as a function of solar zenith angle. Data from
days in which all solar zenith angles (25,35,45,55*) prior to solar noon
was represented (ANBAL data set).
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the VZA effect (Table 12). By using regression equations between APAR and

nadir-derived VIs (from the AVG data set) to estimate APAR the effect of

using off-nadir spectral data with an equation that was derived from nadir

data can be seen. The overall regression (all SZAs) between LAI and

instantaneous APAR was used to estimate daily APAR from IAI as a function

of DOY. From these daily APAR estimates, cumulative APAR was calculated.

The slope of the best fit line for the linear relationship between

daily ABGDWT and accumulated APAR was used as the efficiency of radiant

energy conversion to ABGDWT, E,, (Fig. 40). As can be expected, E,

differed between growth cycles with a value of 1.58 g MJ- 1 for growth cycle

three and a value of 1.84 g MJ"1 for growth cycle four. Experimental

evidence indicates that a healthy green crop not limited by disease or

water stress has an EC in the range 1.5 - 2.0 g MJ- 1 (Steven et al., 1983).

Combined data from the third and fourth growth cycles were used to

estimate Ec. The third and fourth growth cycles were used because oven-

drying of phytomass was done more consistently during these two growth

cycles.

Differences in the ability to estimate ABGDWT from APAR from one

growing cycle to the next may be due to changes in E,. Some researchers

believe that VIs may actually be able to reflect these changes, so VIs may

be better correlated to the product of APAR and E. than to APAR alone

(Steven et al., 1983).

To calculate ABGDWT directly from the VIs, a regression line was fit

to the ABGDWT data and the accumulated nadir derived VI through time

(Table 13). The regression equation derived from the fourth growth cycle

was used to estimate ABGDWT for the third growth cycle and vice versa.
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TABLE 12.
Regression parameters for linear regressions between day of year
(DOY) and APAR, normalized difference and simple ratio
vegetative indices (NDVI, SRVI), and IAI for third and fourth
growth cycles. View zenith angle given in parentheses for
vegetative indices.

Third Growth Cycle Fourth Growth Cycle
Dependent
Variable 00 0 r2  RMSE fo P, r2  RMSE

APAR -4.90 0.025 0.86 0.066 -7.02 0.030 0.85 0.107

NDVI(50) -2.97 0.017 0.83 0.048 -4.25 0.020 0.80 0.082

NDVI(0) -3.37 0.019 0.86 0.047 -4.37 0.020 0.82 0.077

NDVI(-50) -3.18 0.018 0.90 0.038 -4.40 0.020 0.82 0.078

SRVI(50) -98.0 0.494 0.89 1.070 -132 0.555 0.90 1.490

SRVI(0) -82.8 0.416 0.82 1.230 -114 0.480 0.87 1.500

SRVI(-50) -72.0 0.364 0.88 0.846 -86.5 0.367 0.93 0.856

LAI -15.4 0.079 0.93 0.452 -18.5 0.078 0.99 0.163
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Fig. 40. Relationship between measured above ground dry phytomass
weight (ABGDWT) and accumulated absorbed photosynthetically active
radiation (APAR). Slope of regression line represents the efficiency of
conversion of light to ABGDWT, Ec.
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TABLE 13.
Regression parameters for linear regression between acummulated
nadir normalized difference and simple ratio vegetative indices
(NDVI, SRVI), LAI, and above ground dry weight (ABGDWT) for third
and fourth growth cycles.

Third Growth Cycle Fourth Growth Cycle
ABGDWT

Estimator 00 Pi r 2  RMSE PO f1 r 2  RMSE

ZNDVI 52.75 12.45 0.75 36.2 62.73 12.26 0.89 24.10

ZSRVI 126.70 1.30 0.85 28.3 107.30 1.02 0.79 32.60

LAI 58.95 99.35 0.69 40.2 49.98 114.90 0.97 12.25
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This same approach was taken with the relationship between ABGDWT and LAI.

Only the third and fourth growth periods had enough measurements to get

the full range of APAR/VIs values.

For the most part, estimates of ABGDWT from measured or estimated APAR

were less than the mean measured ABGDWT (Table 14). Regressions of VIs vs

APAR for all growth cycles showed that the regression parameters for these

relationships were just as variable between growth periods (Table 15) as

they were due to changes in solar or view zenith angles (Appendix C).

The consistent underestimation of ABGDWT from measured and estimated APAR

could be the result of: 1) the method in which daily APAR was calculated;

2) fitting a line rather than a curve to the relationship between APAR and

DOY resulting in the underestimation of daily APAR and 3) the use of the

overall regression relationship (i.e. from all 107 rns) between VIs/LAI

and APAR to estimate APAR from the VIs/LAI.

Estimates of ABGDWT from accumulated VIs underestimated ABGDWT for

growth cycle three and overestimated ABGDWT for growth cycle four. SZA

influence on the VIs is the most likely reason for this. The average SZA

is larger for growth cycle four as compared to growth cycle three (44 vs

38*) and since the relationship between accumulated VIs and ABGDWT from

growth cycle four was used to estimate the ABGDWT for growth cycle three

and vice versa the same amount of vegetation can be expected to be

associated with a higher VI for growth cycle four as compared to three.

LAI was the most consistent estimator of ABGDWT over the two growth

cycles.
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TABLE 14.
Estimated and mean measured above ground dry weight (ABGDWT) and
mean relative error (MRE) of estimated ABGDWT with respect to
measured mean. View zenith angle for normalized difference and
simple ratio vegetative indices (NDVI, SRVI) given Ln parentheses.

Third Growth Cycle Fourth Growth Cycle
ABGDWT

Estimator ABGDWT (gm-2) MR () ABGDWT (gm-2) MRE (%)

APAR 271 -32 214 -27

APAR by NDVI(-50) 272 -31 193 -34

APAR by NDVI(0) 291 -27 217 -26

APAR by NDVI(50) 270 -32 311 6

APAR by SRVI(-50) 246 -38 204 -30

APAR by SRVI(0) 252 -36 222 -24

APAR by SRVI(50) 288 -27 241 -17

APAR by IAI 241 -39 155 -47

ZNDVI (-50) 343 -13 306 4

ZNDVI (0) 352 -11 320 9

ENDVI (50) 343 -13 371 27

ZSRVI (-50) 341 -14 368 26

ZSRVI (0) 294 -26 411 40

ZSRVI (50) 288 -27 454 55

LAI 369 -7 275 -6

Measured Mean 396 - 293 -



96

TABLE 15.
Results of linear regression for normalized difference and simple
ratio vegetative indices (NDVI, SRVI) vs APAR for growth cycles
two through four. Includes data from all view and solar zenith
angles from AVG data set.

NDVI vs APAR SRVI vs APAR
Growth
Cycle 00 fi r2  RMSE fo fi r2  RMSE

2 -0.62 1.56 0.810 0.083 0.07 -0.12 0.821 0.180

3 -0.33 1.23 0.828 0.072 -0.05 -0.11 0.760 0.210

4 -0.45 1.42 0.955 0.057 0.09 -0.13 0.922 0.159
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SUMMARY AND CONCLUSION

A field experiment was conducted to examine the relationships between

two commonly used VIs, the simple ratio vegetative index (SRVI) and the

normalized difference vegetative index (NDVI), and the biophysical

parameters of leaf area index (II) and fraction of absorbed

photosynthetically active radiation (APAR) for alfalfa. Statistical tests

were run to determine if significant differences (at a - 0.05) existed for

the regression coefficients from relationships established using VIs

calculated at different solar and view zenith angles. The results of

these statistical tests showed that the regression coefficients (slope and

intercept) for the relationships between VIs and APAR/LAI were

significantly different for different solar and view zenith angles.

Additionally, the relationships were not symmetrical about solar noon and

significant interaction existed between the main effects. This was

attributed to changes in canopy geometry which occurred throughout the day

as the result of alfalfa's diaheliotropism. In most cases, regression

coefficients did not appear to have a functional relationship to view or

solar zenith angle. However, in the cases of SRVI vs LAI and SRVI vs

APAR, regression coefficients exhibited a smooth trend as a function of

VZA indicating that the VZA effect may be modelled and corrected for in

these cases. No one combination of view and solar zenith angles best

predicted LAI from the VIs while APAR was best estimated from VIs

calculated from bidirectional reflectance factors with nadir/near-nadir

view zenith angles. Despite the statistical significance of the view and

solar zenith angle effects, D-indices of agreement between measured and
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estimated APAR/LAI were very high when VI data from all view and solar

zenith angles were used in regressions established with nadir VI data. As

reported by other researchers, NDVI lost its sensitivity to changes in

vegetation amount as LAI approached 4.0 while SRVI was fairly insensitive

to changes in vegetative amount at low LAIs. Similarly, when estimating

APAR, NDVI was a poor estimator at high values of APAR and SRVI was a poor

estimator at low values of APAR. NDVI was less affected by changes in

solar and view zenith angles than SRVI and subsequently had about half as

much variation in the regression coefficients as a result of changes in

view and solar zenith angle than SRVI.

Both measured and estimated APAR (by VIs and LAI) accumulated over

time consistently underestimated above ground dry weight (ABGDWT). This

may have been the result of error involved in determining daily APAR and

using a linear model to describe daily APAR as a function of day of year.

Estimates of ABGDWT from accumulated VIs and LAI had lower overall mean

relative errors than APAR estimates of ABGDWT. This could be a result of

VIs and LAI being able to reflect some of the changes in the efficiency of

radiant energy conversion to dry matter exhibited from growth cycle to

growth cycle. Using VIs calculated from off-nadir (0, - ± 50*) spectral

data in nadir-derived relationships, changed ABGDWT estimates by at most

15%. The mean relative error for the estimation of ABGDWT when averaged

over the two growth cycles tested was lowest for accumulated nadir-derived

NDVI estimates of ABGDWT.
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Suggestion for future research

Similar studies should be conducted with other canopies. However,

because the assumptions underlying the analysis of a split-plot in time:

1) homogeneity of error variance among levels of the independent variable

and 2) identical correlations between measurements for any two periods are

unrealistic in these studies, a repeated measures experimental design is

recommended (Eskridge and Stevens, 1987). Since current measurement

techniques limit the number of experimental plots that can be measured in

the 20 - 30 minutes required to limit changes in SZA, fewer treatment

levels would have to be used to get the needed degrees of freedom for

error in a repeated measure analysis. This can be done by making spectral

measurements in just three VZAs (at nadir and extreme off-nadir values in

the forward and backscattered directions rather than the eleven VZAs used

in this experiment.) This would also result in less correlation of random

error between experimental units since the experimental units would not

overlap as they did in this experiment. The architectural changes in the

alfalfa canopy as a result of its diaheliotropic nature was a contributing

factor in the regression coefficients being nonsymmetrical with respect to

solar noon. These same kind of results can be expected for row crops,

requiring measurements before and after solar noon.

The data set generated by this experiment could be used with a

radiative transfer model to simulate what effect differing atmospheric

conditions may have. Holben et al. (1986) reported that off-nadir

reflectances were approximately maintained when factoring in the

atmosphere, the magnitude of response across the VZAs changed but the
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shape of the reflectance vs VZA curve did not. Other researchers have

indicated that interpretable spectral results may not be obtainable from

satellites without prior atmospheric corrections (Dave, 1980; Jackson et

al., 1983).

In this study the non-Lambertian aspects of leaf reflectance played a

major role in explaining observed canopy reflectance. If view or solar

zenith angle correction factors are going to be applied to spectral data,

more research is needed to determine the spatial resolution and canopy

architecture at which non-Lambertian effects are of concern.

The technology of remote sensing is advancing at a rapid pace. The

ability to process and transmit data at ever increasing speeds is making

the move toward narrow-band sensors more practical. Spectral curve

analysis may prove to be a more repeatable and subsequently more

standardized method to estimate the quantity and quality of vegetation

than broad-band VIs (see for eg. Demetriades-Shah et al., 1990; Hall et

al., 1990). This would conveniently settle the current quandary over the

"best" vegetative index. If not, the question of what radiometric

precision is most appropriate for the task at hand must be addressed.
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Appendix A. Mean environmental conditions and coefficients of
variation (CV) for BRFs and VIs for each data run. %QDIF is
percent diffuse irradiance in PAR wavelengths; RH is relative
humidity; WS,WD are wind speed and direction; HTA is mean tilt
angle.

DOY SZA B3CV B4CV NDCV SRCV %QDIF RH WS WD MTA

130 -25 21 8 2 19- 17 46 6.0 209

130 25 23 9 2 18 19 45 5.4 285 47

137 -55 30 13 2 15 19 48 7.6 290 48

137 -45 29 12 2 17 12 42 7.7 291

137 -35 23 11 2 17 17 37 7.5 288

137 -25 18 10 2 16 14 34 6.9 292

137 22 17 6 2 16 13 28 6.7 280

137 25 21 9 2 15 12 23 6.3 260

137 35 28 13 2 15 14 21 6.1 252 50

137 45 30 13 2 16 15 21 5.5 256

148 -45 26 9 1 15 25 68 3.7 240 44

148 -35 23 9 1 15 22 59 3.9 244

148 -25 18 7 1 13 22 55 4.1 175

149 -45 28 10 2 16 30 59 4.2 108 45

155 -55 28 15 2 14 16 73 2.5 140 48

155 -45 28 13 2 16 14 68 2.8 129

155 -35 26 12 2 18 13 60 2.9 139

155 19 26 8 3 24 12 44 4.9 106

171 -45 31 24 16 31 13 63 4.1 323 90

171 -35 26 21 17 32 11 56 4.5 321

171 -25 23 19 20 37 11 47 4.5 292 39

171 18 17 11 9 15 11 42 3.9 307

171 25 29 17 20 37 12 38 3.6 288

171 35 32 19 21 39 11 34 4.5 290

171 45 36 22 19 40 13 32 3.3 284 90

171 55 39 25 17 40 16 31 2.6 285

173 -52 32 25 12 31 19 80 5.1 297



113

Appendix A cont. Mean environmental conditions and coefficients
of variation (CV) for BRFs and VIs for each data run. %QDIF is
percent diffuse irradiance in PAR wavelengths; RH is relative
humidity; WS,WD are wind speed and direction; KTA is mean tilt
angle.

DOY SZA B3CV B4CV NDCV SRCV %QDIF RH WS WD MTA

173 -45 29 22 13 30 16 78 5.1 289 61

173 -35 24 18 13 29 15 74 5.2 288 62

173 -25 20 17 16 36 14 66 6.1 296 59

173 18 16 12 9 18 17 57 6.6 289 67

176 -55 36 22 7 27 16 77 1.7 286 62

176 -45 33 19 8 29 14 70 1.5 276 62

176 -35 28 16 9 30 13 67 2.0 228 63

176 -25 28 14 11 37 13 65 2.5 248 55

176 18 17 9 7 21 13 57 2.4 118 63

176 25 28 13 9 32 15 51 1.7 121 53

176 35 28 16 9 34 17 45 1.9 105 60

176 45 31 18 8 31 18 37 2.0 116 61

176 55 34 20 7 28 28 44 2.6 81

179 -55 31 20 3 17 27 80 6.2 134 61

179 -45 31 18 3 20 22 71 7.0 147 56

179 -35 25 16 4 22 20 61 6.9 152 56

179 -25 24 14 5 27 18 55 6.3 153 57

179 18 20 10 4 22 18 50 5.8 157 47

198 -25 17 15 14 11 17 47 7.5 180 90

204 -35 24 18 9 15 22 52 2.0 175 72

212 -55 37 20 8 24 19 79 1.6 70 54

212 -45 37 17 11 28 16 71 1.6 68 59

212 -35 32 15 12 30 15 58 1.7 107 57

212 -25 26 13 13 29 17 52 2.1 141 53

212 23 24 12 11 22 19 51 2.3 129 59

212 25 26 12 11 22 26 50 2.3 123 60

218 -55 41 23 9 32 16 75 1.2 223 62
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Appendix A cont. Mean environmental conditions and coefficients
of variation (CV) for BRFs and VIs for each data run. %QDIF is
percent diffuse irradiance in PAR wavelengths; RH is relative
humidity; WS,WD are wind speed and direction; MTA is mean tilt
angle.

DOY SZA B3CV B4CV NDCV SRCV %QDIF RH WS WD MTA

218 -45 42 21 12 38 14 57 1.2 122 55

218 -35 39 19 14 40 13 45 1.6 117 58

218 -25 35 17 15 39 18 43 1.9 139 54

218 25 29 13 10 34 22 41 2.2 210 46

218 35 28 16 8 25 17 35 2.3 139 55

218 45 35 19 9 28 19 36 2.5 77 61

218 55 33 22 8 29 31 36 2.5 98 58

220 25 27 15 8 33 14 57 5.4 108 49

220 35 29 17 8 26 18 56 5.1 126 55

220 45 35 19 8 28 23 55 5.3 118 53

220 55 34 23 7 28 28 55 5.4 113 64

221 -55 39 24 8 32 26 81 3.4 137 67

221 -45 42 22 11 38 24 73 2.1 168 48

221 -35 41 21 13 41 22 67 1.8 142 46

221 25 28 16 8 35 22 60 2.6 111 47

221 35 29 16 7 28 28 60 3.0 138 57

229 -55 35 24 5 27 18 76 6.1 165 54

229 -45 37 21 6 32 15 71 5.9 166 61

241 35 18 17 9 7 26 40 4.3 206 66

241 45 23 20 10 9 21 38 4.8 223 90

241 55 27 23 10 9 18 36 5.0 253 90

242 35 19 18 11 9 16 43 4.9 130 79

242 45 23 20 10 9 21 44 4.7 107 90

242 55 28 23 12 12 22 43 5.0 109 83

243 -55 30 23 12 14 19 49 4.9 172 90

243 -45 25 21 12 12 17 42 5.5 199 90

243 -35 21 17 12 11 14 37 5.0 206 64
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Appendix A cont. Mean environmental conditions and coefficients
of variation (CV) for BRFs and VIs for each data run. IQDIF is
percent diffuse irradiance in PAR wavelengths; RH is relative
humidity; WS,WD are wind speed and direction; MTA is mean tilt
angle.

DOY SZA B3CV B4CV NDCV SRCV %QDIF RH WS WD MTA

243 33 19 17 12 11 14 35 3.7 200 65

247 -55 34 27 14 28 16 56 4.8 213 88

247 -45 30 25 16 27 13 48 5.2 204 59

247 -35 27 21 18 30 11 36 5.6 222 64

247 35 25 19 12 19 12 34 5.1 225 66

247 45 27 23 10 20 14 32 5.4 204 72

247 55 33 24 11 23 18 32 3.9 199 62

249 -45 32 25 17 36 11 45 4.7 185 74

249 35 27 19 12 23 11 37 3.5 193 51

249 45 27 21 9 22 14 34 3.6 249 61

249 55 32 24 9 26 17 34 3.9 267 74

255 -55 38 26 10 38 17 59 4.1 208 61

255 -45 37 25 13 41 15 49 4.1 192 54

255 38 28 18 8 30 14 36 4.3 174 59

255 45 29 20 6 27 15 30 4.4 179 59

255 55 36 22 6 26 18 28 4.6 161 51

257 -55 36 26 8 34 17 63 5.8 313 70

257 -45 38 26 13 43 13 52 5.2 315 53

257 39 31 18 7 30 12 41 6.0 300 57

257 45 29 19 5 25 12 29 6.1 306 55

257 55 36 22 5 23 14 27 5.5 308 60

267 -55 32 25 7 33 12 42 5.8 184 50

267 -45 34 24 9 40 11 36 6.8 179

267 43 32 17 5 26 11 33 6.7 174 49

267 45 33 16 4 21 11 32 6.5 183 56

267 55 37 21 3 17 13 32 6.2 170 58
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Appendix B-i. Results of NDVI vs LAI regression. Minus signs
indicate a SZA prior to solar noon or a VZA in the backscatter
direction.

Model: ln(LAI/Cos(e.)) - 60 + 61 * NDVI

From LSN data set From AVG data set

SZA VZA 60 61 r2  RMSE 60  61 r2 RMSE

-55 -50 -2.26 4.43 0.71 0.38 -2.15 4.30 0.86 0.23

-55 -40 -2.35 4.41 0.72 0.38 -2.04 4.03 0.80 0.29

-55 -30 -2.57 4.62 0.76 0.35 -2.42 4.43 0.82 0.26

-55 -20 -2.78 4.90 0.87 0.26 -2.67 4.76 0.91 0.18

-55 -10 -2.41 4.51 0.76 0.35 -2.75 4.94 0.92 0.17

-55 0 -2.26 4.27 0.73 0.37 -2.64 4.75 0.94 0.17

-55 10 -2.53 4.50 0.75 0.36 -2.32 4.25 0.83 0.25

-55 20 -2.25 4.14 0.73 0.37 -2.05 3.89 0.79 0.28

-55 30 -2.74 4.70 0.78 0.33 -2.34 4.22 0.82 0.26

-55 40 -2.62 4.63 0.76 0.35 -2.61 4.61 0.87 0.23

-55 50 -2.76 4.73 0.71 0.38 -2.52 4.44 0.81 0.27

-45 -50 -2.54 4.63 0.78 0.35 -2.42 4.54 0.90 0.21

-45 -40 -2.62 4.76 0.79 0.37 -2.36 4.44 0.89 0.23

-45 -30 -2.61 4.59 0.77 0.37 -2.53 4.51 0.85 0.26

-45 -20 -2.87 4.89 0.88 0.27 -2.71 4.72 0.92 0.19

-45 -10 -2.49 4.49 0.87 0.28 -2.56 4.61 0.95 0.14

-45 0 -2.01 3.88 0.71 0.42 -2.49 4.54 0.94 0.16

-45 10 -2.33 4.19 0.75 0.39 -2.61 4.58 0.92 0.19

-45 20 -2.30 4.13 0.77 0.37 -2.29 4.15 0.85 0.26

-45 30 -2.43 4.23 0.77 0.38 -2.33 4.12 0.83 0.28

-45 40 -2.74 4.64 0.84 0.31 -2.63 4.53 0.91 0.21

-45 50 -3.15 5.08 0.77 0.37 -2.96 4.86 0.87 0.24

-35 -50 -2.12 4.08 0.83 0.36 -2.38 4.32 0.95 0.18

-35 -40 -2.17 4.01 0.81 0.40 -2.34 4.27 0.93 0.22

-35 -30 -2.19 4.03 0.82 0.38 -2.41 4.35 0.90 0.25

-35 -20 -2.38 4.28 0.89 0.30 -2.65 4.66 0.96 0.15

-35 -10 -2.15 4.02 0.90 0.27 -2.64 4.33 0.97 0.13
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Appendix B-1 cont. Results of NDVI vs LAI regression. Minus signs
indicate a SZA prior to solar noon or a VZA in the backscatter
direction.

Model: ln(IAI/Cos(e3 )) - 6o + 61 * NDVI

From LSN data set From AVG data set

SZA VZA 60  61 r2  RMSE 60  61 r2  RMSE

-35 0 -1.93 3.73 0.82 0.38 -2.26 4.22 0.97 0.13

-35 10 -2.01 3.76 0.77 0.42 -2.50 4.45 0.97 0.13

-35 20 -2.21 3.90 0.81 0.38 -2.46 4.25 0.93 0.21

-35 30 -2.29 3.89 0.80 0.39 -2.53 4.21 0.88 0.28

-35 40 -2.32 3.92 0.85 0.34 -2.64 4.33 0.91 0.24

-35 50 -2.40 4.10 0.85 0.34 -2.72 4.52 0.94 0.20

-25 -50 -2.72 4.52 0.83 0.38 -2.96 4.87 0.97 0.15

-25 -40 -2.80 4.60 0.80 0.41 -3.12 5.05 0.96 0.18

-25 -30 -2.80 4.63 0.87 0.34 -2.95 4.86 0.96 0.20

-25 -20 -2.57 4.51 0.93 0.24 -2.73 4.75 0.99 0.09

-25 -10 -2.35 4.28 0.91 0.28 -2.65 4.73 0.98 0.13

-25 0 -2.26 4.15 0.89 0.31 -2.51 4.52 0.97 0.18

-25 10 -2.15 3.93 0.75 0.46 -2.62 4.64 0.96 0.20

-25 20 -2.08 3.76 0.70 0.51 -2.74 4.73 0.97 0.17

-25 30 -2.60 4.31 0.82 0.39 -2.88 4.70 0.96 0.19

-25 40 -3.05 4.65 0.83 0.38 -3.37 5.07 0.94 0.23

-25 50 -2.93 4.56 0.89 0.31 -3.24 4.96 0.97 0.17

25 -50 -1.68 3.17 0.62 0.30 -2.58 4.33 0.80 0.24

25 -40 -1.48 2.98 0.61 0.31 -2.68 4.54 0.87 0.19

25 -30 -1.51 3.15 0.80 0.22 -2.05 3.88 0.90 0.17

25 -20 -1.74 3.41 0.83 0.21 -2.34 4.20 0.93 0.15

25 -10 -1.99 3.65 0.83 0.21 -2.60 4.45 0.94 0.13

25 0 -1.87 3.41 0.67 0.28 -2.95 4.78 0.92 0.15

25 10 -1.64 3.09 0.61 0.31 -3.05 4.89 0.96 0.11

25 20 -1.44 2.82 0.58 0.32 -2.89 4.65 0.93 0.14

25 30 -1.39 2.75 0.53 0.34 -3.09 4.86 0.90 0.17

25 40 -2.16 3.72 0.82 0.21 -2.68 4.37 0.89 0.18
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Appendix B-i cont. Results of NDVI vs LAI regression. Minus signs
indicate a SZA prior to solar noon or a VZA in the backscatter
direction.

Model: ln(LAI/Cos(O,)) - 6o + 61 * NDVI

From LSN data set From AVG data set

SZA VZA 60 61 r2  RMSE 60 61 r2  RMSE

25 50 -2.45 4.04 0.77 0.23 -3.42 5.22 0.92 0.16

35 -50 -2.43 4.22 0.92 0.23 -2.38 4.05 0.94 0.19

35 -40 -2.28 4.22 0.89 0.28 -2.29 4.13 0.93 0.20

35 -30 -2.34 4.24 0.91 0.25 -2.29 4.03 0.94 0.20

35 -20 -2.43 4.19 0.92 0.24 -2.39 4.03 0.94 0.19

35 -10 -2.52 4.26 0.90 0.27 -2.53 4.17 0.95 0.17

35 0 -2.11 3.65 0.84 0.33 -2.28 3.82 0.95 0.18

35 10 -2.26 3.93 0.87 0.31 -2.31 3.91 0.95 0.17

35 20 -2.25 3.95 0.85 0.33 -2.28 3.89 0.93 0.20

35 30 -2.12 3.82 0.90 0.26 -2.09 3.65 0.94 0.18

35 40 -2.40 4.06 0.95 0.19 -2.30 3.85 0.95 0.18

35 50 -2.53 4.07 0.88 0.29 -2.48 3.96 0.91 0.23

45 -50 -2.14 4.05 0.91 0.24 -2.23 4.10 0.94 0.18

45 -40 -2.29 4.17 0.90 0.25 -2.41 4.29 0.93 0.20

45 -30 -2.13 3.98 0.89 0.26 -2.28 4.10 0.95 0.17

45 -20 -2.50 4.26 0.93 0.21 -2.53 4.23 0.94 0.19

45 -10 -2.17 3.81 0.87 0.29 -4.41 4.05 0.94 0.18

45 0 -2.12 3.78 0.84 0.31 -2.43 4.12 0.95 0.16

45 10 -2.21 3.91 0.88 0.27 -2.31 3.99 0.94 0.19

45 20 -1.95 3.65 0.86 0.30 -2.12 3.81 0.94 0.18

45 30 -2.33 4.17 0.91 0.24 -2.38 4.14 0.96 0.14

45 40 -2.55 4.27 0.93 0.21 -2.58 4.23 0.94 0.19

45 50 -2.59 4.23 0.87 0.28 -2.79 4.43 0.92 0.21

55 -50 -1.84 3.73 0.85 0.28 -1.99 3.85 0.96 0.14

55 -40 -1.94 3.81 0.91 0.21 -2.02 3.82 0.97 0.11

55 -30 -2.04 3.89 0.90 0.23 -2.19 3.99 0.97 0.12

55 -20 -2.16 3.90 0.91 0.21 -2.24 3.90 0.96 0.14
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Appendix B-I cont. Results of NDVI vs LAI regression. Minus signs
indicate a SZA prior to solar noon or a VZA in the backscatter
direction.

Model: ln(LAI/Cos(e,)) - 60 + 61 * NDVI

From LSN data set From AVG data set

SZA VZA 6 0  61 r 2  RMSE 60  61 r 2  RMSE

55 -10 -1.90 3.57 0.87 0.26 -2.08 3.71 0.96 0.14

55 0 -1.92 3.64 0.84 0.29 -2.10 3.78 0.95 0.16

55 10 -1.74 3.46 0.84 0.29 -1.88 3.55 0.92 0.19

55 20 -2.03 3.84 0.89 0.24 -2.12 3.86 0.96 0.14

55 30 -2.20 3.98 0.90 0.23 -2.28 3.98 0.96 0.14

55 40 -2.37 4.07 0.93 0.19 -2.30 3.88 0.94 0.17

55 50 -2.23 4.30 0.86 0.23 -2.43 4.04 0.94 0.17
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Appendix B-2. Results of SRVI vs LAI regression. For SZA, minus sign
indicates SZA prior to solar noon and for VZA, minus sign indicates
VZA in backscatter direction.

Model: LAI - 60 + 61 * SRVI

LSN data set AVG data set

SZA VZA 60 61 r2  RMSE 60  61 r2  RMSE

-55 -55 -0.35 0.27 0.78 0.575 -0.35 0.27 0.91 0.329

-55 -40 -0.37 0.24 0.83 0.500 -0.28 0.23 0.90 0.342

-55 -30 -0.24 0.20 0.85 0.470 -0.25 0.21 0.94 0.262

-55 -20 -0.08 0.18 0.90 0.393 -0.06 0.19 0.99 0.128

-55 -10 0.16 0.17 0.86 0.450 0.13 0.18 0.97 0.201

-55 0 0.13 0.17 0.85 0.469 0.12 0.17 0.98 0.142

-55 10 -0.04 0.17 0.86 0.460 0.00 0.17 0.96 0.217

-55 20 -0.06 0.16 0.84 0.495 -0.01 0.16 0.95 0.255

-55 30 -0.23 0.18 0.88 0.426 -0.14 0.17 0.96 0.209

-55 40 -0.10 0.18 0.83 0.506 -0.08 0.18 0.93 0.282

-55 50 -0.35 0.19 0.82 0.516 -0.31 0.19 0.92 0.308

-45 -50 -0.29 0.28 0.86 0.520 -0.25 0.28 0.96 0.272

-45 -40 -0.38 0.29 0.92 0.449 -0.k4 0.27 0.96 0.281

-45 -30 -0.23 0.23 0.89 0.486 -0.15 0.23 0.96 0.275

-45 -20 -0.14 0.21 0.93 0.395 -0.02 0.20 0.98 0.169

-45 -10 0.11 0.19 0.93 0.388 0.24 0.18 0.98 0.183

-45 0 0.21 0.18 0.90 0.473 0.32 0.17 0.97 0.224

-45 10 0.12 0.17 0.90 0.481 0.22 0.17 0.97 0.228

-45 20 0.13 0.16 0.89 0.494 0.24 0.16 0.96 0.269

-45 30 -0.05 0.17 0.91 0.453 0.11 0.16 0.95 0.305

-45 40 0.00 0.17 0.90 0.469 0.09 0.17 0.98 0.212

-45 50 -0.17 0.19 0.90 0.472 -0.10 0.18 0.97 0.241

-35 -50 -0.04 0.24 0.91 0.462 0.05 0.23 0.98 0.207

-35 -40 -0.20 0.27 0.91 0.468 -0.10 0.26 0.97 0.248

-35 -30 -0.22 0.27 0.91 0.466 -0.12 0.26 0.96 0.296

-35 -20 -0.10 0.24 0.94 0.393 0.02 0.23 0.98 0.210
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Appendix B-2 cont. Results of SRVI vs IAI regression. For SZA, minus
sign indicates SZA prior to solar noon and for VZA, minus sign
indicates VZA in backscatter direction.

Model: LAI - 60 + 61 * SRVI

LSN data set AVG data set

SZA VZA 60 61 r2  RMSE go 61 r2  RMSE

-35 -10 0.14 0.20 0.94 0.391 0.25 0.19 0.98 0.228

-35 0 0.23 0.19 0.95 0.361 0.37 0.17 0.97 0.266

-35 10 0.23 0.18 0.92 0.434 0.35 0.17 0.96 0.282

-35 20 0.14 0.17 0.92 0.439 0.25 0.16 0.97 0.259

-35 30 -0.02 0.18 0.90 0.485 0.07 0.17 0.98 0.222

-35 40 -0.10 0.18 0.92 0.443 0.03 0.17 0.99 0.174

-35 50 -0.02 0.18 0.93 0.401 0.08 0.18 0.99 0.130

-25 -50 0.01 0.22 0.94 0.384 0.10 0.20 0.99 0.170

-25 -40 -0.10 0.24 0.92 0.453 -0.01 0.22 0.97 0.239

-25 -30 -0.24 0.26 0.92 0.451 -0.13 0.26 0.97 0.258

-25 -20 -0.05 0.26 0.96 0.325 0.09 0.24 0.98 0.216

-25 -10 0.18 0.23 0.95 0.348 0.32 0.21 0.96 0.296

-25 0 0.30 0.20 0.95 0.347 0.42 0.18 0.96 0.310

-25 10 0.37 0.18 0.94 0.388 0.48 0.17 0.95 0.334

-25 20 0.34 0.18 0.93 0.425 0.44 0.17 0.95 0.320

-25 30 0.19 0.18 0.93 0.401 0.29 0.16 0.96 0.291

-25 40 -0.07 0.17 0.91 0.471 0.02 0.17 0.97 0.265

-25 50 -0.07 0.18 0.93 0.416 0.03 0.17 0.99 0.121

25 -50 0.19 0.20 0.83 0.444 0.01 0.22 0.93 0.315

25 -40 0.26 0.21 0.81 0.469 0.02 0.24 0.96 0.250

25 -30 0.39 0.22 0.90 0.335 0.22 0.24 0.98 0.169

25 -20 0.43 0.20 0.90 0.348 0.21 0.23 0.97 0.217

25 -10 0.46 0.18 0.91 0.324 0.28 0.20 0.97 0.205

25 0 0.48 0.16 0.87 0.389 0.30 0.18 0.98 0.185

25 10 0.56 0.15 0.87 0.394 0.42 0.16 0.98 0.171

25 20 0.54 0.14 0.82 0.454 0.39 0.16 0.98 0.178

25 30 0.58 0.13 0.80 0.479 0.38 0.15 0.98 0.184
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Appendix B-2 cont. Results of SRVI vs LAI regression. For SZA, minus
sign indicates SZA prior to solar noon and for VZA, minus sign
indicates VZA in backscatter direction.

Model: LAI - 60 + 61 * SRVI

LSN data set AVG data set

SZA VZA 60  61 r 2  RMSE 60  a, r 2  RMSE

25 40 0.54 0.14 0.88 0.371 0.36 0.15 0.98 0.151

25 50 0.41 0.15 0.88 0.366 0.28 0.16 0.98 0.173

35 -50 -0.13 0.24 0.93 0.285 -0.25 0.25 0.94 0.244

35 -40 -0.01 0.26 0.89 0.341 -0.17 0.28 0.91 0.302

35 -30 0.07 0.23 0.92 0.298 -0.10 0.24 0.95 0.232

35 -20 0.03 0.21 0.94 0.254 -0.08 0.21 0.95 0.220

35 -10 0.06 0.20 0.89 0.342 -0.07 0.20 0.95 0.225

35 0 0.13 0.17 0.87 0.374 -0.02 0.19 0.96 0.196

35 10 0.17 0.18 0.88 0.367 0.05 0.18 0.95 0.222

35 20 0.25 0.17 0.81 0.457 0.08 0.19 0.92 0.289

35 30 0.29 0.16 0.87 0.378 0.15 0.17 0.95 0.224

35 40 0.18 0.17 0.92 0.299 0.06 0.18 0.96 0.199

35 50 0.11 0.16 0.84 0.412 -0.03 0.17 0.96 0.208

45 -50 -0.07 0.24 0.87 0.372 -0.28 0.26 0.92 0.279

45 -40 -0.11 0.23 0.92 0.291 -0.22 0.24 0.90 0.323

45 -30 0.13 0.19 0.91 0.306 -0.06 0.21 0.96 0.193

45 -20 -0.02 0.18 0.94 0.241 -0.12 0.19 0.94 0.240

45 -10 0.06 0.16 0.88 0.347 -0.12 0.18 0.96 0.210

45 0 0.17 0.15 0.84 0.402 -0.02 0.17 0.95 0.232

45 10 0.21 0.15 0.84 0.410 0.09 0.16 0.90 0.323

45 20 0.27 0.15 0.85 0.390 0.13 0.16 0.94 0.250

45 30 0.27 0.15 0.90 0.327 0.15 0.16 0.97 0.181

45 40 0.07 0.16 0.94 0.253 -0.05 0.16 0.97 0.179

45 50 0.08 0.14 0.83 0.421 -0.19 0.17 0.95 0.213

55 -50 0.26 0.16 0.68 0.389 -0.04 0.19 0.88 0.217

55 -40 0.16 0.16 0.87 0.248 0.01 0.17 0.93 0.166

55 -30 0.23 0.14 0.85 0.265 0.02 0.16 0.94 0.155
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Appendix B-2 cont. Results of SRVI vs LAI regression. For SZA, minus
sign indicates SZA prior to solar noon and for VZA, minus sign
indicates VZA in backscatter direction.

Model: LAI - 60 + 61 * SRVI

LSN data set AVG data set

SZA VZA 60 61 r2  RMSE 60 61 r 2  RMSE

55 -20 0.16 0.13 0.86 0.255 0.03 0.14 0.93 0.174

55 -10 0.27 0.12 0.76 0.328 0.12 0.13 0.89 0.210

55 0 0.37 0.11 0.66 0.403 0.20 0.12 0.81 0.274

55 10 0.37 0.12 0.69 0.389 0.26 0.12 0.76 0.313

55 20 0.25 0.14 0.76 0.342 0.14 0.14 0.85 0.248

55 30 0.17 0.14 0.81 0.302 0.08 0.14 0.89 0.212

55 40 0.15 0.12 0.82 0.292 0.09 0.12 0.89 0.212

55 50 0.36 0.10 0.59 0.441 0.12 0.12 0.85 0.248
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Appendix C-1. Results of NDVI vs APAR regression. For SZA, minus
sign indicates prior to solar noon; for VZA minus sign indicates a VZA
in the backscatter direction.

Model: APAR - 6o + 61 * NDVI

LSN data set AVG data set

SZA VZA 60  61 r2  RMSE 60  61 r2  RMSE

-55 -50 -0.31 1.36 0.75 0.107 -0.35 1.41 0.89 0.066

-55 -40 -0.32 1.33 0.74 0.109 -0.31 1.31 0.81 0.088

-55 -30 -0.34 1.33 0.71 0.115 -0.42 1.43 0.82 0.084

-55 -20 -0.35 1.36 0.74 0.108 -0.49 1.52 0.90 0.063

-55 -10 -0.36 1.39 0.82 0.091 -0.54 1.61 0.95 0.047

-55 0 -0.39 1.42 0.91 0.064 -0.49 1.54 0.94 0.049

-55 10 -0.41 1.41 0.82 0.090 -0.39 1.38 0.84 0.081

-55 20 -0.30 1.27 0.77 0.101 -0.30 1.25 0.79 0.090

-55 30 -0.38 1.35 0.72 0.112 -0.40 1.37 0.83 0.083
-55 40 -0.27 1.23 0.60 0.135 -0.48 1.49 0.87 0.071

-55 50 -0.47 1.46 0.77 0.103 -0.46 1.44 0.82 0.085

-45 -50 -0.46 1.51 0.79 0.112 -0.52 1.59 0.93 0.061

-45 -40 -0.50 1.56 0.83 0.103 -0.50 1.57 0.92 0.065

-45 -30 -0.45 1.45 0.75 0.125 -0.56 1.59 0.88 0.080

-45 -20 -0.50 1.50 0.80 0.111 -0.91 1.65 0.94 0.058

-45 -10 -0.42 1.43 0.86 0.095 -0.56 1.60 0.97 0.043

-45 0 -0.37 1.37 0.86 0.095 -0.53 1.58 0.96 0.048

-4- 10 -0.46 1.46 0.88 0.088 -0.58 1.60 0.95 0.053

-45 20 -0.41 1.38 0.83 0.103 -0.47 1.45 0.88 0.081

-45 30 -0.41 1.35 0.76 0.123 -0.48 1.44 0.84 0.094

-45 40 -0.42 1.38 0.72 0.132 -0.57 1.57 0.91 0.071

-45 50 -0.69 1.69 0.83 0.102 -0.70 1.70 0.89 0.077

-35 -50 -0.36 1.33 0.80 0.133 -0.51 1.52 0.91 0.087

-35 -40 -0.35 1.30 0.76 0.143 -0.48 1.48 0.86 0.108

-35 -30 -0.34 1.28 0.75 0.146 -0.50 1.49 0.82 0.122

-35 -20 -0.40 1.37 0.82 0.124 -0.60 1.62 0.91 0.089

-35 -10 -0.34 1.30 0.85 0.112 -0.51 1.53 0.94 0.071
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Appendix C-I cont. Results of NDVI vs APAR regression. For SZA,
minus sign indicates prior to solar noon; for VZA minus sign indicates
a VZA in the backscatter direction.

Model: APAR - 60 + 61 * NDVI

LSN data set AVG data set

SZA VZA 60 61 r2  RMSE 60 6 r2  RMSE

-35 10 -0.33 1.27 0.79 0.133 -0.56 1.59 0.95 0.064

-35 20 -0.35 1.25 0.75 0.145 -0.52 1.47 0.85 0.111

-35 30 -0.35 1.22 0.71 0.158 -0.52 1.43 0.78 0.135

-35 40 -0.34 1.19 0.71 0.158 -0.56 1.47 0.81 0.126

-35 50 -0.41 1.31 0.78 0.137 -0.61 1.56 0.86 0.107

-25 -50 -0.46 1.34 0.74 0.148 -0.51 1.42 0.84 0.116

-25 -40 -0.46 1.34 0.69 0.163 -0.53 1.43 0.78 0.138

-25 -30 -0.44 1.31 0.70 0.161 -0.46 1.34 0.73 0.153

-25 -20 -0.40 1.32 0.80 0.129 -0.43 1.37 0.83 0.120

-25 -10 -0.38 1.32 0.87 0.107 -0.45 1.43 0.92 0.084

-25 0 -0.37 1.31 0.89 0.095 -0.42 1.38 0.92 0.080

-25 10 -0.36 1.28 0.81 0.126 -0.46 1.43 0.94 0.072

-25 20 -0.32 1.19 0.71 0.156 -0.48 1.42 0.91 0.088

-25 30 -0.42 1.27 0.72 0.154 -0.47 1.34 0.79 0.132

-25 40 -0.52 1.33 0.68 0.164 -0.55 1.37 0.68 0.165

-25 50 -0.48 1.30 0.73 0.152 -0.52 1.35 0.72 0.155

25 -50 -0.65 1.61 0.81 0.095 -0.80 1.80 0.92 0.059

25 -40 -0.42 1.34 0.62 0.136 -0.82 1.86 0.96 0.041

25 -30 -0.37 1.34 0.71 0.118 -0.54 1.56 0.96 0.040

25 -20 -0.51 1.50 0.79 0.100 -0.66 1.69 0.99 0.026

25 -10 -0.66 1.65 0.84 0.088 -0.75 1.77 0.98 0.031

25 0 -0.78 1.78 0.92 0.093 -0.90 1.92 0.97 0.035

25 10 -0.69 1.65 0.88 0.075 -0.9 1.91 0.96 0.042

25 20 -0.57 1.49 0.81 0.096 -0.86 1.85 0.97 0.039

25 30 -0.44 1.31 0.61 0.137 -0.95 1.95 0.95 0.046

25 40 -0.67 1.61 0.76 0.107 -0.79 1.75 0.95 0.048

25 50 -0.68 1.60 0.60 0.139 -1.06 2.06 0.94 0.052
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Appendix C-i cont. Results of NDVI vs APAR regression. For SZA,
minus sign indicates prior to solar noon; for VZA minus sign indicates
a VZA in the backscatter direction.

Model: APAR - 60 + 61 * NDVI

LSN data set AVG data set

SZA VZA 60  61 r2  RMSE 60  61 r2  RMSE

35 -50 -0.44 1.39 0.91 0.082 -0.47 1.43 0.97 0.050

35 -40 -0.36 1.32 0.79 0.126 -0.44 1.47 0.97 0.046

35 -30 -0.37 1.33 0.82 0.116 -0.44 1.44 0.98 0.036

35 -20 -0.40 1.32 0.84 0.110 -0.48 1.44 0.98 0.038

35 -10 -0.47 1.41 0.90 0.089 -0.52 1.48 0.97 0.043

35 0 -0.36 1.25 0.90 0.085 -0.43 1.35 0.97 0.046

35 10 -0.41 1.34 0.92 0.076 -0.45 1.39 0.98 0.034

35 20 -0.38 1.31 0.86 0.103 -0.43 1.38 0.96 0.052

35 30 -0.33 1.24 0.87 0.099 -0.37 1.30 0.98 0.039

35 40 -0.37 1.26 0.83 0.114 -0.44 1.36 0.96 0.054

35 50 -0.46 1.33 0.86 0.104 -0.49 1.38 0.91 0.081

45 -50 -0.43 1.45 0.90 0.089 -0.53 1.60 0.97 0.051

45 -40 -0.48 1.49 0.89 0.093 -0.62 1.69 0.98 0.043

45 -30 -0.40 1.40 0.86 0.108 -0.55 1.60 0.97 0.046

45 -20 -0.52 1.49 0.88 0.100 -0.65 1.66 0.97 0.047

45 -10 -0.45 1.38 0.89 0.094 -0.59 1.56 0.94 0.070

45 0 -0.45 1.40 0.90 0.090 -0.60 1.59 0.97 0.054

45 10 -0.48 1.45 0.94 0.072 -0.57 1.56 0.97 0.047

45 20 -0.38 1.34 0.91 0.086 -0.48 1.48 0.96 0.057

45 30 -0.51 1.52 0.93 0.073 -0.58 1.60 0.98 0.043

45 40 -0.53 1.48 0.86 0.106 -0.64 1.61 0.92 0.081

45 50 -0.60 1.53 0.89 0.093 -0.73 1.70 0.92 0.081

55 -50 -0.35 1.33 0.81 0.113 -0.48 1.51 0.96 0.055

55 -40 -0.39 1.36 0.88 0.092 -0.47 1.48 0.95 0.063

55 -30 -0.39 1.35 0.82 0.117 -0.53 1.53 0.93 0.072

55 -20 -0.43 1.35 0.82 0.110 -0.56 1.52 0.94 0.068

55 -10 -0.37 1.27 0.83 0.108 -0.50 1.44 0.94 0.065
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Appendix C-1 cont. Results of NDVI vs APAR regression. For SZA,
minus sign indicates prior to solar noon; for VZA minus sign indicates
a VZA in the backscatter direction.

Model: APAR - 60 + 61 * NDVI

LSN data set AVG data set

SZA VZA 60  a, r2  RMSE Go 61 r2  RMSE

55 0 -0.41 1.35 0.86 0.097 -0.52 1.50 0.97 0.047

55 10 -0.36 1.30 0.90 0.084 -0.45 1.42 0.96 0.051

55 20 -0.44 1.41 0.90 0.081 -0.52 1.51 0.95 0.061

55 30 -0.47 1.41 0.85 0.099 -0.,9 1.56 0.95 0.058

55 40 -0.52 1.44 0.87 0.095 -0.58 1.51 0.92 0.074

55 50 -0.54 1.45 0.85 0.100 -0.66 1.60 0.96 0.056
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Appendix C-2. Results of SRVI vs APAR regression. For SZA, minus
sign indicates prior to solar noon; for VZA minus sign indicates a VZA
in the backscatter direction.

Model: ln(l-APAR) - 60 + 61 * SRVI

LSN data set AVG data set

SZA VZA 60 61 r2  RMSE 60 d1  r2  RMSE

-55 -50 0.15 -0.19 0.80 0.381 0.25 -0.20 0.90 0.25

-55 -40 0.15 -0.17 0.85 0.330 0.20 -0.17 0.89 0.27

-55 -30 0.04 -0.14 0.84 0.346 0.17 -0.15 0.92 0.23

-55 -20 -0.09 -0.13 0.87 0.313 0.01 -0.14 0.95 0.18

-55 -10 -0.20 -0.12 0.90 0.272 -0.12 0.13 0.94 0.19

-55 0 -0.15 -0.12 0.93 0.223 -0.10 -0.13 0.96 0.15

-55 10 -0.03 0.12 0.93 0.230 0.01 -0.12 0.97 0.13

-55 20 0.00 -0.12 0.92 0.238 0.02 -0.12 0.96 0.15

-55 30 0.05 -0.12 0.89 0.284 0.11 -0.13 0.97 0.13

-55 40 -0.12 -0.12 0.75 0.428 0.04 -0.13 0.90 0.25

-55 50 0.18 -0.14 0.88 0.299 0.22 -0.14 0.90 0.25

-45 -50 0.24 -0.19 0.87 0.337 0.32 -0.20 0.95 0.20

-45 -40 0.28 -0.19 0.92 0.290 0.31 -0.19 0.95 0.21

-45 -30 0.18 -0.15 0.90 0.317 0.25 -0.16 0.96 0.18

-45 -20 0.11 -0.14 0.92 0.277 0.15 -0.14 0.97 0.15

-45 -10 -0.04 -0.13 0.94 0.240 -0.03 -0.13 0.98 0.14

-45 0 -0.08 -0.12 0.95 0.231 -0.08 -0.12 0.97 0.16

-45 10 -0.01 -0.12 0.96 0.200 0.00 -0.12 0.99 0.11

-45 20 -0.03 -0.11 0.93 0.254 -0.02 0.11 0.97 0.17

-45 30 0.05 -0.11 0.90 0.308 0.05 -0.11 0.93 0.24

-45 40 -0.01 -0.11 0.86 0.373 0.05 -0.12 0.94 0.23

-45 50 0.15 -0.12 0.91 0.294 0.20 -0.13 0.95 0.22

-35 -50 0.23 -0.16 0.93 0.277 0.25 -0.16 0.97 0.17

-35 -40 0.34 -0.18 0.93 0.284 0.35 -0.18 0.95 0.23

-35 -30 0.34 -0.18 0.90 0.320 0.37 -0.19 0.95 0.22

-35 -20 0.27 -0.16 0.94 0.244 0.28 -0.17 0.98 0.14

-35 -10 0.11 -0.14 0.95 0.226 0.12 -0.14 0.98 0.13
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Appendix C-2 cont. Results of SRVI vs APAR regression. For SZA,
minus sign indicates prior to solar noon; for VZA minus sign indicates
a VZA in the backscatter direction.

Model: ln(l-APAR) - 60 + 61 * SRVI

LSN data set AVG data set

SZA VZA 6 0 61 r 2  RMSE 60 61 r 2  RMSE

-35 0 0.06 -0.13 0.96 0.194 0.04 -0.13 0.98 0.12

-35 10 0.06 -0.12 0.96 0.219 0.06 -0.12 0.99 0.12

-35 20 0.12 -0.12 0.95 0.237 0.12 -0.12 0.98 0.13

-35 30 0.22 -0.12 0.92 0.288 0.24 -0.12 0.97 0.18

-35 40 0.26 -0.12 0.91 0.306 0.25 -0.12 0.95 0.22

-35 50 0.22 -0.12 0.95 0.235 0.22 -0.12 0.98 0.15

-25 -50 0.21 -0.13 0.93 0.244 0.21 -0.12 0.97 0.14

-25 -40 0.29 -0.14 0.92 0.266 0.28 -0.14 0.96 0.17

-25 -30 0.36 -0.15 0.91 0.273 0.36 -0.15 0.96 0.17

-25 -20 0.25 -0.15 0.95 0.205 0.24 -0.15 0.99 0.08

-25 -10 0.13 -0.13 0.97 0.152 0.10 -0.13 0.99 0.10

-25 0 0.06 -0.12 0.97 0.151 0.03 -0.11 0.98 0.13

-25 10 0.02 -0.11 0.96 0.182 0.00 -0.10 0.97 0.15

-25 20 0.04 -0.10 0.94 0.225 0.02 -0.10 0.97 0.15

-25 30 0.12 -0.10 0.94 0.225 0.11 -0.10 0.98 0.13

-25 40 0.27 -0.10 0.91 0.267 0.26 -0.10 0.96 0.18

-25 50 0.26 -0.11 0.92 0.250 0.26 -0.11 0.98 0.14

25 -50 0.14 -0.12 0.86 0.243 0.08 -0.11 0.92 0.17

25 -40 0.06 -0.12 0.77 0.306 0.07 -0.12 0.94 0.15

25 -30 -0.04 -0.12 0.83 0.266 -0.04 -0.12 0.94 0.14

25 -20 -0.03 -0.12 0.87 0.236 -0.01 -0.12 0.98 0.08

25 -10 -0.05 -0.11 0.87 0.230 -0.05 -0.10 0.96 0.12

25 0 -0.02 -0.10 0.92 0.185 -0.07 -0.09 0.95 0.14

25 10 -0.07 -0.09 0.91 0.193 -0.15 -0.08 0.91 0.18

25 20 -0.07 -0.09 0.85 0.248 -0.14 -0.08 0.90 0.19

25 30 -0.11 -0.08 0.80 0.286 -0.13 -0.08 0.91 0.18

25 40 -0.11 -0.08 0.82 0.273 -0.12 -0.08 0.93 0.16
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Appendix C-2 cont. Results of SRVI vs APAR regression. For SZA,
minus sign indicates prior to solar noon; for VZA minus sign indicates
a VZA in the backscatter direction.

Model: ln(1-APAR) - 6o + 61 * SRVI

LSN data set AVG data set

SZA VZA 60 61 r2  RMSE 60 61 r2  RMSE

25 50 -0.06 -0.08 0.79 0.297 -0.09 -0.08 0.90 0.19

35 -50 0.22 -0.15 0.92 0.182 0.24 -0.16 0.98 0.08

35 -40 0.10 -0.16 0.79 0.301 0.20 -0.18 0.96 0.11

35 -30 0.06 -0.14 0.83 0.272 0.14 -0.15 0.98 0.08

35 -20 0.09 -0.13 0.87 0.242 0.13 -0.13 0.99 0.06

35 -10 0.11 -0.13 0.91 0.202 0.12 -0.13 0.97 0.09

35 0 0.09 -0.11 0.93 0.171 0.08 -0.12 0.98 0.09

35 10 0.06 -0.12 0.92 0.184 0.04 -0.12 0.97 0.10

35 20 0.01 -0.11 0.88 0.230 0.02 -0.12 0.94 0.14

35 30 -0.04 -0.10 0.86 0.244 -0.03 -0.11 0.95 0.13

35 40 0.00 -0.10 0.85 0.261 0.02 -0.11 0.95 0.13

35 50 0.09 -0.10 0.89 0.220 0.07 -0.11 0.93 0.15

45 -50 0.21 -0.18 0.87 0.279 0.36 -0.20 0.98 0.11

45 -40 0.24 -0.17 0.91 0.232 0.34 -0.19 0.98 0.09

45 -30 0.04 -0.13 0.85 0.291 0.16 -0.15 0.96 0.13

45 -20 0.15 -0.13 0.90 0.235 0.23 -0.14 0.98 0.09

45 -10 0.13 -0.12 0.91 0.224 0.21 -0.13 0.97 0.12

45 0 0.07 -0.12 0.90 0.246 0.14 -0.13 0.96 0.14

45 10 0.05 -0.12 0.92 0.215 0.08 -0.12 0.96 0.14

45 20 -0.01 -0.12 0.92 0.221 0.03 -0.12 0.96 0.15

45 30 -0.04 -0.12 0.90 0.240 0.00 -0.12 0.94 0.18

45 40 0.09 -0.12 0.89 0.250 0.14 -0.12 0.94 0.18

45 50 0.15 -0.11 0.91 0.231 0.26 -0.13 0.96 0.14

55 -50 0.00 -0.14 0.69 0.336 0.30 -0.19 0.93 0.16

55 -40 -0.01 -0.13 0.72 0.318 0.21 -0.16 0.90 0.18

55 -30 -0.11 -0.11 0.63 0.370 0.18 -0.15 0.87 0.21

55 -20 0.00 -0.11 0.73 0.317 0.20 -0.13 0.91 0.18
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Appendix C-2 cont. Results of SRVI vs APAR regression. For SZA,
minus sign indicates prior to s.1 ar noon; for VZA minus sign indicates
a VZA in the backscatter direction.

Model: ln(1-APAR) - 60 + 61 * SRVI

LSN data set AVG data set

SZA VZA 6 0  61 r2  RMSE 60  61 r2  RMSE

55 -10 0.01 -0.11 0.81 0.267 0.13 -0.12 0.91 0.17

55 0 0.01 -0.11 0.86 0.229 0.11 -0.13 0.96 0.12

55 10 -0.01 -0.12 0.85 0.234 0.08 -0.13 0.95 0.13

55 20 0.05 -0.12 0.85 0.237 0.13 -0.14 0.91 0.18

55 30 0.08 -0.12 0.81 0.261 0.18 -0.13 0.93 0.15

55 40 0.09 -0.11 0.82 0.258 0.16 -0.11 0.90 0.18

55 50 0.05 -0.10 0.81 0.262 0.18 -0.12 0.96 0.11



132

Appendix C-3. Results of LAI vs APAR regression. For SZA,
minus sign indicates solar zenith angle prior to solar noon.

Model: ln(l-APAR) - 60 + 61 * LAI

LSN data set AVG data set

SZA 60 61 r2  RMSE 60 61 r2  RMSE

-55 -0.22 -0.37 0.86 0.322 -0.02 -0.42 0.96 0.167

-45 -0.03 -0.45 0.92 0.272 0.14 -0.50 0.98 0.139

-35 0.16 -0.53 0.94 0.247 0.27 -0.58 0.96 0.196

-25 0.20 -0.52 0.96 0.190 0.22 -0.52 0.94 0.220

25 0.13 -0.50 0.83 0.264 0.16 -0.50 0.94 0.157

35 0.09 -0.49 0.89 0.223 0.03 -0.49 0.94 0.146

45 0.12 -0.51 0.93 0.202 0.09 -0.51 0.92 0.203

55 0.07 -0.43 0.75 0.303 0.11 -0.49 0.81 0.266


